Skip to main content

Easy and intuitive generation of synthetic timeseries.

Project description

mockseries

mockseries is and easy to use and intuitive Python package that helps generate synthetic (mock) timeseries.

-> Documentation website.

Installation

#python >=3.6.6 
pip install mockseries

Contributing

Contributions are welcome!
Standards, objectives and process not defined yet.

Quick Run

Define a timeseries

from datetime import timedelta
from mockseries.trend import LinearTrend
from mockseries.seasonality import SinusoidalSeasonality
from mockseries.noise import RedNoise

trend = LinearTrend(coefficient=2, time_unit=timedelta(days=4), flat_base=100)
seasonality = SinusoidalSeasonality(amplitude=20, period=timedelta(days=7)) \
              + SinusoidalSeasonality(amplitude=4, period=timedelta(days=1))
noise = RedNoise(mean=0, std=3, correlation=0.5)

timeseries = trend + seasonality + noise

Generate values

from datetime import datetime
from mockseries.utils import datetime_range

ts_index = datetime_range(
    granularity=timedelta(hours=1),
    start_time=datetime(2021, 5, 31),
    end_time=datetime(2021, 8, 30),
)
ts_values = timeseries.generate(ts_index)

Plot or write to csv

from mockseries.utils import plot_timeseries, write_csv

print(ts_index, ts_values)
plot_timeseries(ts_index, ts_values, save_path="hello_mockseries.png")
write_csv(ts_index, ts_values, "hello_mockseries.csv")

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mockseries-0.1.2.tar.gz (13.4 kB view details)

Uploaded Source

Built Distribution

mockseries-0.1.2-py3-none-any.whl (25.8 kB view details)

Uploaded Python 3

File details

Details for the file mockseries-0.1.2.tar.gz.

File metadata

  • Download URL: mockseries-0.1.2.tar.gz
  • Upload date:
  • Size: 13.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for mockseries-0.1.2.tar.gz
Algorithm Hash digest
SHA256 f4326d86619455500fca432217601d80ca7a461a223caad89471f5ee4f05f87a
MD5 24018f13d31e0b0b60c0e4b984605439
BLAKE2b-256 df2404d00522abf24704ac24e0535ce173215ca90028980bcc46b18eaecee58a

See more details on using hashes here.

File details

Details for the file mockseries-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: mockseries-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 25.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for mockseries-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 21136278a0833455066d5e9c66183a3c8961334381d822f62e0f251ec6ef130a
MD5 fd0175fba4c658bbe4c1328ebe80b9b2
BLAKE2b-256 7cb005e54eaee7dd73afd25cafc52d55049182139871f38509a452a86b7888e7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page