Skip to main content

Easy and intuitive generation of synthetic timeseries.

Project description

mockseries

mockseries is and easy to use and intuitive Python package that helps generate synthetic (mock) timeseries.

-> Documentation website.

Installation

#python >=3.6.6 
pip install mockseries

Contributing

Contributions are welcome!
Standards, objectives and process not defined yet.

Quick Run

Define a timeseries

from datetime import timedelta
from mockseries.trend import LinearTrend
from mockseries.seasonality import SinusoidalSeasonality
from mockseries.noise import RedNoise

trend = LinearTrend(coefficient=2, time_unit=timedelta(days=4), flat_base=100)
seasonality = SinusoidalSeasonality(amplitude=20, period=timedelta(days=7)) \
              + SinusoidalSeasonality(amplitude=4, period=timedelta(days=1))
noise = RedNoise(mean=0, std=3, correlation=0.5)

timeseries = trend + seasonality + noise

Generate values

from datetime import datetime
from mockseries.utils import datetime_range

ts_index = datetime_range(
    granularity=timedelta(hours=1),
    start_time=datetime(2021, 5, 31),
    end_time=datetime(2021, 8, 30),
)
ts_values = timeseries.generate(ts_index)

Plot or write to csv

from mockseries.utils import plot_timeseries, write_csv

print(ts_index, ts_values)
plot_timeseries(ts_index, ts_values, save_path="hello_mockseries.png")
write_csv(ts_index, ts_values, "hello_mockseries.csv")

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mockseries-0.1.4.tar.gz (12.8 kB view details)

Uploaded Source

Built Distribution

mockseries-0.1.4-py3-none-any.whl (25.8 kB view details)

Uploaded Python 3

File details

Details for the file mockseries-0.1.4.tar.gz.

File metadata

  • Download URL: mockseries-0.1.4.tar.gz
  • Upload date:
  • Size: 12.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for mockseries-0.1.4.tar.gz
Algorithm Hash digest
SHA256 819b24fc0b81c92e4b01889abed18d4ef217289df2401cdb5b1241b8f6c366c9
MD5 abcaedc8bc5071eea31b3fd7b55fc5ec
BLAKE2b-256 c4839685f2df85212c3fe92bad85357de863804c83b057152292f3978e6bb9fb

See more details on using hashes here.

File details

Details for the file mockseries-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: mockseries-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 25.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for mockseries-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 8b3804466cb42f2d0e030e276987a0b3cf0bd515fc0f5dd4a5d4b1123b489b59
MD5 48f22cae95ce806a832d23d16f2bc22c
BLAKE2b-256 d625b1150b8c02710230a64356803c69f72174b0c7b8f293ff957a9daf97b663

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page