Easy and intuitive generation of synthetic timeseries.
Project description
mockseries
mockseries is and easy to use and intuitive Python package that helps generate synthetic (mock) timeseries.
Installation
#python >=3.9
pip install mockseries
For older versions of python, here is the compatibility matrix:
mockseries version | Python versions |
---|---|
0.3.x | 3.9 - 3.12 |
0.2.x | 3.8 - 3.11 |
0.1.x | 3.6 - 3.8 |
Contributing
Contributions are welcome!
Standards, objectives and process not defined yet.
Quick Run
Define a timeseries
from datetime import timedelta
from mockseries.trend import LinearTrend
from mockseries.seasonality import SinusoidalSeasonality
from mockseries.noise import RedNoise
trend = LinearTrend(coefficient=2, time_unit=timedelta(days=4), flat_base=100)
seasonality = SinusoidalSeasonality(amplitude=20, period=timedelta(days=7)) \
+ SinusoidalSeasonality(amplitude=4, period=timedelta(days=1))
noise = RedNoise(mean=0, std=3, correlation=0.5)
timeseries = trend + seasonality + noise
Generate values
from datetime import datetime
from mockseries.utils import datetime_range
ts_index = datetime_range(
granularity=timedelta(hours=1),
start_time=datetime(2021, 5, 31),
end_time=datetime(2021, 8, 30),
)
ts_values = timeseries.generate(ts_index)
Plot or write to csv
from mockseries.utils import plot_timeseries, write_csv
print(ts_index, ts_values)
plot_timeseries(ts_index, ts_values, save_path="hello_mockseries.png")
write_csv(ts_index, ts_values, "hello_mockseries.csv")
References
- J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library for Synthetic Time Series in Python,” 2017. [Online]. Available: http://github.com/TimeSynth/TimeSynth.
- TStimulus. Available: https://github.com/cetic/TSimulus.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mockseries-0.3.0.tar.gz
(15.4 kB
view details)
Built Distribution
File details
Details for the file mockseries-0.3.0.tar.gz
.
File metadata
- Download URL: mockseries-0.3.0.tar.gz
- Upload date:
- Size: 15.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fa0e07b85abec057e467bdca49436a81c64dc4676c12abb399120d26aedd634d |
|
MD5 | 318760de8eaf52a6c5674b41ce071607 |
|
BLAKE2b-256 | cf2c111bff286d7a5b714bd5bf950fcb16545d598dacbf20b7dd7544f1ad6ae7 |
File details
Details for the file mockseries-0.3.0-py3-none-any.whl
.
File metadata
- Download URL: mockseries-0.3.0-py3-none-any.whl
- Upload date:
- Size: 25.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e2543d7a03b50aa1425cc2c74629da88bde84c64bdc3d3daa6db64061715b225 |
|
MD5 | f143bc4422aff7f9f004b71ab6248016 |
|
BLAKE2b-256 | 6478c3848247e0e2754a312e4daa6ca2b83c49dd788d5eac42ab0d93a53331d1 |