MODIS Assimilation and Processing Engine
Project description
MODAPE
=====
The **M**\ ODIS **A**\ ssimilation and **P**\ rocessing **E**\ ngine combines a state-of-the art whittaker smoother, implemented as fast C-extension through Cython and including a V-curve optimization of the smoothing parameter, with a HDF5 based processing chain optimized for MODIS data.
The sub-module ``modape.whittaker`` includes the following variations of the whittaker smoother with 2nd order differences:
- **ws2d**: Whittaker with fixed smoothing parameter (``s``)
- **ws2doptv**: Whittaker with V-curve optimization of the smoothing parameter (``s``)
- **ws2doptvp**: Whittaker with V-curve optimization of the smoothing parameter (``s``) and expectile smoothing using asymmetric weights
The MODIS processing chain consists of the following executables, which can be called through commandline:
- ``modis_download``: Query and download raw MODIS products (requires Earthdata credentials)
- ``modis_collect``: Collect raw MODIS data into daily datacubes stored in an HDF5 file
- ``modis_smooth``: Smooth, gapfill and interpolate raw MODIS data using the implemented whittaker smoother
- ``modis_window``: Extract mosaic(s) of multiple MODIS tiles, or subset(s) of a global/tiled MODIS product and export it as GeoTIFF raster in WGS1984 coordinate system
Additional executables:
- ``csv_smooth``: Smooth timeseries stored within a CSV file
- ``rts_smooth``: Smooth a series of raster files stored in a local directory
- ``modis_info``: Retrieve metadata from created HDF5 files
- ``modis_product_table``: MODIS Version 6.0 product table
Installation
------------
**Dependencies:**
modape depends on these packages:
- numpy
- gdal
- h5py
- beautifulsoup4
- requests
- progress
- pandas
Some of these packages (eg. GDAL) can be difficult to build, especially on windows machines. In the latter case it's advisable to download an unofficial binary wheel from `Christoph Gohlke's Unofficial Windows Binaries for Python Extension Packages <https://www.lfd.uci.edu/~gohlke/pythonlibs/>`_ and install it locally with ``pip install`` before installing modape.
**Installation from github:**
.. code:: bash
$ git clone https://github.com/WFP-VAM/modape
$ cd modape
$ pip install .
**Installation from PyPi:**
.. code:: bash
$ pip install modape
Bugs, typos & feature requests
-----
If you find a bug, see a typo, have some kind of troubles running the module or just simply want to have a feature added, please `submit an issue! <https://github.com/WFP-VAM/modape/issues/new>`_
Usage tutorial
-----
All executables can be called with a ``-h`` flag for detailed usage.
For a more detailed tutorial on how to use the executables, please visit `WFP-VAM.github.io/modape <http://WFP-VAM.github.io/modape>`_.
CHANGES
-----
TBD: Initial release
TODO
-----
TBD
-----
References:
P. H. C. Eilers, V. Pesendorfer and R. Bonifacio, "Automatic smoothing of remote sensing data," 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Brugge, 2017, pp. 1-3.
doi: 10.1109/Multi-Temp.2017.8076705
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8076705&isnumber=8035194
Core Whittaker function adapted from ``whit2`` function from `R` package `ptw <https://cran.r-project.org/package=ptw>`_:
Bloemberg, T. G. et al. (2010) "Improved Parametric Time Warping for Proteomics", Chemometrics and Intelligent Laboratory Systems, 104 (1), 65-74
Wehrens, R. et al. (2015) "Fast parametric warping of peak lists", Bioinformatics, in press.
-----
Author & maintainer:
Valentin Pesendorfer
valentin.pesendorfer@wfp.org
=====
The **M**\ ODIS **A**\ ssimilation and **P**\ rocessing **E**\ ngine combines a state-of-the art whittaker smoother, implemented as fast C-extension through Cython and including a V-curve optimization of the smoothing parameter, with a HDF5 based processing chain optimized for MODIS data.
The sub-module ``modape.whittaker`` includes the following variations of the whittaker smoother with 2nd order differences:
- **ws2d**: Whittaker with fixed smoothing parameter (``s``)
- **ws2doptv**: Whittaker with V-curve optimization of the smoothing parameter (``s``)
- **ws2doptvp**: Whittaker with V-curve optimization of the smoothing parameter (``s``) and expectile smoothing using asymmetric weights
The MODIS processing chain consists of the following executables, which can be called through commandline:
- ``modis_download``: Query and download raw MODIS products (requires Earthdata credentials)
- ``modis_collect``: Collect raw MODIS data into daily datacubes stored in an HDF5 file
- ``modis_smooth``: Smooth, gapfill and interpolate raw MODIS data using the implemented whittaker smoother
- ``modis_window``: Extract mosaic(s) of multiple MODIS tiles, or subset(s) of a global/tiled MODIS product and export it as GeoTIFF raster in WGS1984 coordinate system
Additional executables:
- ``csv_smooth``: Smooth timeseries stored within a CSV file
- ``rts_smooth``: Smooth a series of raster files stored in a local directory
- ``modis_info``: Retrieve metadata from created HDF5 files
- ``modis_product_table``: MODIS Version 6.0 product table
Installation
------------
**Dependencies:**
modape depends on these packages:
- numpy
- gdal
- h5py
- beautifulsoup4
- requests
- progress
- pandas
Some of these packages (eg. GDAL) can be difficult to build, especially on windows machines. In the latter case it's advisable to download an unofficial binary wheel from `Christoph Gohlke's Unofficial Windows Binaries for Python Extension Packages <https://www.lfd.uci.edu/~gohlke/pythonlibs/>`_ and install it locally with ``pip install`` before installing modape.
**Installation from github:**
.. code:: bash
$ git clone https://github.com/WFP-VAM/modape
$ cd modape
$ pip install .
**Installation from PyPi:**
.. code:: bash
$ pip install modape
Bugs, typos & feature requests
-----
If you find a bug, see a typo, have some kind of troubles running the module or just simply want to have a feature added, please `submit an issue! <https://github.com/WFP-VAM/modape/issues/new>`_
Usage tutorial
-----
All executables can be called with a ``-h`` flag for detailed usage.
For a more detailed tutorial on how to use the executables, please visit `WFP-VAM.github.io/modape <http://WFP-VAM.github.io/modape>`_.
CHANGES
-----
TBD: Initial release
TODO
-----
TBD
-----
References:
P. H. C. Eilers, V. Pesendorfer and R. Bonifacio, "Automatic smoothing of remote sensing data," 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Brugge, 2017, pp. 1-3.
doi: 10.1109/Multi-Temp.2017.8076705
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8076705&isnumber=8035194
Core Whittaker function adapted from ``whit2`` function from `R` package `ptw <https://cran.r-project.org/package=ptw>`_:
Bloemberg, T. G. et al. (2010) "Improved Parametric Time Warping for Proteomics", Chemometrics and Intelligent Laboratory Systems, 104 (1), 65-74
Wehrens, R. et al. (2015) "Fast parametric warping of peak lists", Bioinformatics, in press.
-----
Author & maintainer:
Valentin Pesendorfer
valentin.pesendorfer@wfp.org
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distributions
Close
Hashes for modape-0.1.0-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 596792032cb3d1d2eae4c4b4fd95a621bb2dd971c78bd7522c87a70332b2ebd7 |
|
MD5 | ce650fda060c6ddf65b319c3693ea95d |
|
BLAKE2b-256 | f19869d27db91eb276d84dfdd75de4cfa668c3258f74eba1c8184fea259b1f36 |
Close
Hashes for modape-0.1.0-cp36-cp36m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1ee94b066d5e83f815ab7ef06012f9ec36cfb793efb7eee25e9f65815b7429e4 |
|
MD5 | 93e1fbb7f5b54f6d13e9695853ada4b8 |
|
BLAKE2b-256 | a962f6d1b273edca838e1bcb5208b3962f693659f4bb2b26382a64e8f0d600a3 |
Close
Hashes for modape-0.1.0-cp27-cp27m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0cd131b68c8eb97943dab0ccf8b0d66adcbc1c22009ebbe43da4123cd0021506 |
|
MD5 | 955e578f43c071f32a07ce5c37b6a896 |
|
BLAKE2b-256 | dd96e00c34a26a293ea5cc7a9bb6d59cb57edb2083f886656daad2f808f29fc8 |
Close
Hashes for modape-0.1.0-cp27-cp27m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 660bc6c72cb0543e733950f43bb371c2a8b512f6aee738c3d13b9248d0082ec9 |
|
MD5 | 6adb230ccddd85db05d36eed36795544 |
|
BLAKE2b-256 | cdb22a6b1c0914d669fb8c761275113be8f3f3ebd794a7df6aecf0755e846d00 |