Skip to main content

Easily compose a model ensemble from your machine learning models

Project description

Model Composer


PyPI version shields.io PyPI license PyPI pyversions Downloads Downloads

Motivation

This use-case prompted the development of model-composer:

  • You have two tensorflow models, one trained on weekday data and one trained on weekend data
  • You would like to compose a single tensorflow model that can be used to generate predictions for any day of the week.
  • You want the composed model to be natively defined in tensorflow - i.e. a single "computational graph" that can be easily loaded and used to make predictions.
  • You want a single composed model becasuse:
    • It is easier to maintain than having to implement the logic to compose the models in every service that needs to make predictions.
    • It ensures the performance of the composed model will remain consistent with a native tensorflow model of a similar complexity.
    • It is easier to deploy a single model than multiple models

Documentation

The official documentation is hosted on ReadTheDocs: https://model-composer.readthedocs.io/

Install

Using pip:

pip install model-composer

Extras

Make use of extras to install the model composer implementations that you need:

pip install model-composer[tensorflow]  # compose tensorflow models
pip install model-composer[cloudpathlib]  # load models from cloud storage
pip install model-composer[all]  # all extras

Quick start

Declare your composed model in a yaml file which defines the components and how they should be composed.

name: "ride_share_pricing"
components:
  - name: weekday_model
    path: weekday_model.tf
    type: tensorflow
    where:
      input: is_weekday
      operator: eq
      value: true
  - name: weekend_model
    path: weekend_model.tf
    type: tensorflow
    where:
      input: is_weekday
      operator: eq
      value: false

Each component needs to have the following properties:

  • name: The name of the component model
  • path: The path to the component model on disk
  • type: The type of the component model.
  • where: The condition at which the component model should be used.

We build the weekend model and save it to disk.

import tensorflow as tf

# Build the weekend model
weekend_model = tf.keras.Sequential([
    tf.keras.layers.Input(shape=(1,), name="distance"),
    tf.keras.layers.Dense(1, name="price")
])

weekend_model.compile(optimizer="adam", loss="mse")

weekend_model.fit(
    x={"distance": tf.convert_to_tensor([10, 20], dtype=tf.float32)},
    y=tf.convert_to_tensor([10, 20], dtype=tf.float32),
    epochs=10
)
weekend_model.save("weekend_model.tf")

We build the weekday model and save it to disk.

# Build the weekday model
weekday_model = tf.keras.Sequential([
    tf.keras.layers.Input(shape=(1,), name="distance"),
    tf.keras.layers.Dense(1, name="price")
])

weekday_model.compile(optimizer="adam", loss="mse")

weekday_model.fit(
    x={"distance": tf.convert_to_tensor([10, 20], dtype=tf.float32)},
    y=tf.convert_to_tensor([5, 10], dtype=tf.float32),
    epochs=10
)

# Save the models
weekday_model.save("weekday_model.tf")

We can now build our composed model from the example yaml spec.

import tensorflow as tf
from model_composer import TensorflowModelComposer

composed_model = TensorflowModelComposer().from_yaml("example.yaml")

assert isinstance(composed_model, tf.keras.Model)

composed_model.save("composed_model.tf")

loaded_model = tf.keras.models.load_model("composed_model.tf")

composed_model.predict({
  "is_weekday": tf.convert_to_tensor([True, False], dtype=tf.bool),
  "distance": tf.convert_to_tensor([10, 20], dtype=tf.float32)
})

Roadmap

  • Support for more ML frameworks:
    • PyTorch
    • Scikit-learn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

model_composer-0.3.0-py3-none-any.whl (11.5 kB view details)

Uploaded Python 3

File details

Details for the file model_composer-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: model_composer-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 11.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.0 CPython/3.8.7 Darwin/22.5.0

File hashes

Hashes for model_composer-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 088c80242de963d1f781b34487c727ec546cf648d79ce5ea2ff234c1e50a80a7
MD5 365e344569e45f9d5cd22769fba437bd
BLAKE2b-256 f021c9bc04ff94bd1b1473c28deec523154e06621ee036774fbeb26d8b07e6dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page