A simple wrapper around DeepSpeed for model parallelism.
Project description
Model Parallelism
This package is a simple wrapper around DeepSpeed to make it as easy as possible to implement model parallelism in your PyTorch models.
Example Usage
# Your training script
+ import model_parallelism
# All your data preparation, logging, etc.
model = create_model(...)
- model = model.to(device)
- optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
+ model = model_parallelism.initialize(
+ model, learning_rate=1e-4, optimizer="Adam", batch_size=batch_size
+ )
for batch in dataloader:
loss = model(batch)
- loss.backward
+ model.backward(loss)
- optimizer.step()
+ model.step()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file model_parallelism-0.1.0.tar.gz.
File metadata
- Download URL: model_parallelism-0.1.0.tar.gz
- Upload date:
- Size: 2.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
a8b0e0a17d367882b18e741627ac1111569959335da794092a6a20701562551a
|
|
| MD5 |
2155568b1f52846c01bee7fdba29eff5
|
|
| BLAKE2b-256 |
50f6a6c229c9464c277c454664bf8d5c9985375d662a8137d9647e919b4565c0
|
File details
Details for the file model_parallelism-0.1.0-py3-none-any.whl.
File metadata
- Download URL: model_parallelism-0.1.0-py3-none-any.whl
- Upload date:
- Size: 3.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
880dd831f4f643de34d3aa45a4443a52d4c27adb6bad6634c99a06ecd4340b9f
|
|
| MD5 |
3f800594e831a0446274f2eb5312a098
|
|
| BLAKE2b-256 |
fc87744e42608fe0e4abdfe7feccadd42c36f40f23a68bf208cb5970aa0f65d0
|