Skip to main content

Model Performance Toolkit (model-perf) is a Python package backed by test applications for different platforms (Windows/MacOS, Android/iOS, Web) to test machine learning models on different target platforms and devices (e.g., Google Pixel for Android, iPhone for iOS).

Project description

Model Performance Toolkit

Model Performance Toolkit (model-perf) is a Python package backed by test applications for different platforms (Windows/MacOS, Android/iOS, Web) to test machine learning models on different target platforms and devices (e.g., Google Pixel for Android, iPhone for iOS).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

model_perf-0.0.1rc1-cp310-cp310-win_amd64.whl (141.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

model_perf-0.0.1rc1-cp310-cp310-manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10

model_perf-0.0.1rc1-cp39-cp39-win_amd64.whl (141.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

model_perf-0.0.1rc1-cp39-cp39-manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9

model_perf-0.0.1rc1-cp38-cp38-win_amd64.whl (142.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

model_perf-0.0.1rc1-cp38-cp38-manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8

model_perf-0.0.1rc1-cp37-cp37m-win_amd64.whl (142.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

model_perf-0.0.1rc1-cp37-cp37m-manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m

File details

Details for the file model_perf-0.0.1rc1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for model_perf-0.0.1rc1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e13bb34faeed80597c03ad954de68e293ce19210c2fc80b1370a56aedecba043
MD5 ad1420acad3b355feb6834789ecb2ab0
BLAKE2b-256 956c2198e700f45dca8ea805b361f7bc8390a3a6b8010c0dbac7847b6e46a619

See more details on using hashes here.

File details

Details for the file model_perf-0.0.1rc1-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for model_perf-0.0.1rc1-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c1d6ddee2fc18bc307920ffc3cdabad6bf7ea3cb6ce428d47e5baf3f77b3820c
MD5 559dc7199de0717c5fba612a9c5134e9
BLAKE2b-256 ffdb9e2194a306350b639aaf1e07fba16635091703e9a6a675902838943d4a59

See more details on using hashes here.

File details

Details for the file model_perf-0.0.1rc1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for model_perf-0.0.1rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 84a755b59579ceae2d1ff42a7a38d8ab8f9705936d72aacc799a362ce22ee484
MD5 126f552c4d5ebe4305d055fb507d604f
BLAKE2b-256 0616ca477b9c7881839c8d43ffba3ad73260261d6a2460a64f8b804c3989b2ad

See more details on using hashes here.

File details

Details for the file model_perf-0.0.1rc1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for model_perf-0.0.1rc1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9197e9e8bc73f4560951a5558ec5f597afcc7577eb5e6979b870706da7ef6a5b
MD5 70b3c9dc55152f7846278bd9f8463301
BLAKE2b-256 3acc92cd9fcc98042c803da5a5d1cd95baee228e11335fb1758060472b278d83

See more details on using hashes here.

File details

Details for the file model_perf-0.0.1rc1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for model_perf-0.0.1rc1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4b686c8d16e730e944daa104a8363bae58eb42f2fedf25b9391b66c2dde36dff
MD5 98d8f42477531258bc71df2441c5d87a
BLAKE2b-256 bfe196388d2c8f3f43130195e2d47b86409e1d79530b0780f972c689b0f76a7e

See more details on using hashes here.

File details

Details for the file model_perf-0.0.1rc1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for model_perf-0.0.1rc1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 81aa0a1e3f5c7e59dbe45589390d08743d74c7fba5794c6cec71b58dfce177ac
MD5 c02b65cd1c5914e5a3fb423fec2ba0ba
BLAKE2b-256 ffb0737160b7de6ccfe4837d86774ce2bf88a0ba1010316f074aae470422166a

See more details on using hashes here.

File details

Details for the file model_perf-0.0.1rc1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for model_perf-0.0.1rc1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f8955152cd2f148c172f574c79a0ae45eb259a1e0924aead44ab10d97db37787
MD5 582ae9ceec3ba9e53e4c7fb50b8bd601
BLAKE2b-256 e897aa85c06b0f7aad5acf80d7590a40ecd1ba4b26d3f40851698ddf73ce4dd6

See more details on using hashes here.

File details

Details for the file model_perf-0.0.1rc1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for model_perf-0.0.1rc1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b97552f0522b8361a7439f3c06b5117fdeb4c974cfffbcf2d1c03a3a518e7ada
MD5 8fc36169e56de7297dcd15335383bdc1
BLAKE2b-256 151f9a844c926a501b2cd68dc774bb1caadca287cf50dc6491ab57352811dd70

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page