Skip to main content

Awesome model_predictive_control created by AdityaNG

Project description

model_predictive_control

codecov CI

Python implementation of MPC solver

demo

Install it from PyPI

pip install model_predictive_control

Usage

import numpy as np

from model_predictive_control.cost.trajectory2d_steering_penalty import (
    Traj2DSteeringPenalty,
)
from model_predictive_control.models.bicycle import (
    BicycleModel,
    BicycleModelParams,
)
from model_predictive_control.mpc import MPC

# Initialize the Bicycle Model
params = BicycleModelParams(
    time_step=time_step,
    steering_ratio=13.27,
    wheel_base=2.83972,
    speed_kp=1.0,
    speed_ki=0.1,
    speed_kd=0.05,
    throttle_min=-1.0,
    throttle_max=1.0,
    throttle_gain=5.0,  # Max throttle corresponds to 5m/s^2
)
bicycle_model = BicycleModel(params)

# Define the cost function
cost = Traj2DSteeringPenalty(model=bicycle_model)

# Initialize MPC Controller
horizon = 20
state_dim = 4  # (x, y, theta, velocity)
controls_dim = 2  # (steering_angle, velocity)

mpc = MPC(
    model=bicycle_model,
    cost=cost,
    horizon=horizon,
    state_dim=state_dim,
    controls_dim=controls_dim,
)

# Define initial state (x, y, theta, velocity)
start_state = [0.0, 0.0, 0.0, 1.0]

# Define desired trajectory: moving in a straight line
desired_state_sequence = [[i * 1.0, i * 0.5, 0.0, 1.0] for i in range(horizon)]

# Initial control sequence: assuming zero steering and constant speed
initial_control_sequence = [[0.0, 1.0] for _ in range(horizon)]

# Define control bounds: steering_angle between -0.5 and 0.5 radians,
# velocity between 0.0 and 2.0 m/s
bounds = [[(-np.deg2rad(400), np.deg2rad(400)), (-1.0, 1.0)] for _ in range(horizon)]

# Optimize control inputs using MPC
optimized_control_sequence = mpc.step(
    start_state_tuple=start_state,
    desired_state_sequence=desired_state_sequence,
    initial_control_sequence=initial_control_sequence,
    bounds=bounds,
    max_iters=50,
)

Run the demo with the following

$ python -m model_predictive_control
#or
$ model_predictive_control

Development

Read the CONTRIBUTING.md file.

TODO

  • Bicycle Model

  • Drone Model

  • MPC

  • Visualizer Demo

  • MPC Auto-Optimizer: Takes a set of expected vehicle trajectories and the search space of hyperparamters and returns the list of optimal hyperparameters

  • MPC Compiler: Takes the MPC model with a set of expected vehicle trajectories and produces numpy array a mapping from trajectory to control signals. This can be used with a cosine similarity logic to decide on control logic in real time.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

model_predictive_control-0.1.0.tar.gz (13.2 kB view hashes)

Uploaded Source

Built Distribution

model_predictive_control-0.1.0-py3-none-any.whl (12.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page