Skip to main content

A Python library for training and tuning machine learning models.

Project description



Downloads PyPI License DOI

The model_tuner library is a versatile and powerful tool designed to facilitate the training, tuning, and evaluation of machine learning models. It supports various functionalities such as handling imbalanced data, applying different scaling and imputation techniques, calibrating models, and conducting cross-validation. This library is particularly useful for hyperparameter tuning and ensuring optimal performance across different metrics.

Prerequisites

Before installing model_tuner, ensure your system meets the following requirements:

Python Version

model_tuner requires Python 3.7 or higher. Specific dependency versions vary depending on your Python version.

📦 Dependencies

The following dependencies will be automatically installed for each python version when you install model_tuner via pip:

Package Python 3.7 Python 3.8 Python 3.9–3.10 Python 3.11+
joblib 1.3.2
tqdm 4.66.4
catboost 1.2.7
setuptools 75.1.0
wheel 0.44.0
numpy 1.21.4 >=1.19.5,<2.0.0
pandas 1.1.5 >=1.3.5,<2.2.3
scikit-learn 0.23.2 >=1.0.2,<1.4.0 >=1.0.2,<=1.5.1 1.5.1
scipy 1.4.1 >=1.6.3,<1.11 >=1.6.3,<=1.14.0 1.14.0
imbalanced-learn 0.7.0 0.12.4
scikit-optimize 0.8.1 0.10.2
xgboost 1.6.2 2.1.2

Legend:
✓ – Same as previous version
— – Not applicable or not required

💾 Installation

You can install model_tuner directly from PyPI:

pip install model_tuner

📄 Official Documentation

https://uclamii.github.io/model_tuner

🌐 Website

https://www.mii.ucla.edu/

⚖️ License

model_tuner is distributed under the Apache License. See LICENSE for more information.

📚 Citing model_tuner

If you use model_tuner in your research or projects, please consider citing it.

@software{funnell_2024_12727322,
  author       = {Funnell, Arthur and
                  Shpaner, Leonid and
                  Petousis, Panayiotis},
  title        = {Model Tuner},
  month        = jul,
  year         = 2024,
  publisher    = {Zenodo},
  version      = {0.0.31b},
  doi          = {10.5281/zenodo.12727322},
  url          = {https://doi.org/10.5281/zenodo.12727322}
}

Support

If you have any questions or issues with model_tuner, please open an issue on this GitHub repository.

Acknowledgements

This work was supported by the UCLA Medical Informatics Institute (MII) and the Clinical and Translational Science Institute (CTSI). Special thanks to Dr. Alex Bui for his invaluable guidance and support, and to Panayiotis Petousis, PhD, for his original contributions to this codebase.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

model_tuner-0.0.31b0.tar.gz (34.2 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

model_tuner-0.0.31b0-py3-none-any.whl (33.3 kB view details)

Uploaded Python 3

File details

Details for the file model_tuner-0.0.31b0.tar.gz.

File metadata

  • Download URL: model_tuner-0.0.31b0.tar.gz
  • Upload date:
  • Size: 34.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for model_tuner-0.0.31b0.tar.gz
Algorithm Hash digest
SHA256 937bc2948ad2b79576a4ccce2d7f7f342564e138deb188a4be43da9a73e55b4d
MD5 5ebe816e009eb48767fa7a0e31cb398f
BLAKE2b-256 295dbf10f93606ea0ddadd4be310f2c93bbc7cf658bda56198b4052a9eea3465

See more details on using hashes here.

File details

Details for the file model_tuner-0.0.31b0-py3-none-any.whl.

File metadata

  • Download URL: model_tuner-0.0.31b0-py3-none-any.whl
  • Upload date:
  • Size: 33.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for model_tuner-0.0.31b0-py3-none-any.whl
Algorithm Hash digest
SHA256 02149c0e2ae6ddf71abf93f338fd33561805db19abbbe660680bbe236cd49171
MD5 f98889163e3630d7bc518e528e45fcbf
BLAKE2b-256 4afc0516fc021dedb1f5336cf3362ff03cfe730d96410fa5109b463c59d16e16

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page