Skip to main content

Model wrapper for Pytorch, which can training, predict, evaluate, etc.

Project description

Usage Sample ''''''''''''

.. code:: python

    from model_wrapper import SplitClassModelWrapper

    classes = ['class1', 'class2', 'class3'...]
    X = [[...], [...],]
    y = [0, 0, 1, 2, 1...]

    model = ...
    wrapper = SplitClassModelWrapper(model, classes=classes)
    wrapper.train(X, y, val_size=0.2)

    X_test = [[...], [...],]
    y_test = [0, 1, 1, 2, 1...]
    result = wrapper.evaluate(X_test, y_test)
    # 0.953125

    result = wrapper.predict(X_test)
    # [0, 1]

    result = wrapper.predict_classes(X_test)
    # ['class1', 'class2']

    result = wrapper.predict_proba(X_test)
    # ([0, 1], array([0.99439645, 0.99190724], dtype=float32))

    result = wrapper.predict_classes_proba(X_test)
    # (['class1', 'class2'], array([0.99439645, 0.99190724], dtype=float32))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

model-wrapper-0.1.3.tar.gz (11.9 kB view details)

Uploaded Source

File details

Details for the file model-wrapper-0.1.3.tar.gz.

File metadata

  • Download URL: model-wrapper-0.1.3.tar.gz
  • Upload date:
  • Size: 11.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for model-wrapper-0.1.3.tar.gz
Algorithm Hash digest
SHA256 189c083a85c91d6540992c5fe0d63202c68a9af36482721984dfdbe2b1589ec5
MD5 607fcdeb00ae338ee318d7776897a384
BLAKE2b-256 1a1952073c87aeb83e08844aa2a968b97e2acfd52d413c0cdef6bb032475a9fa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page