Model wrapper for Pytorch, which can training, predict, evaluate, etc.
Project description
Usage Sample ''''''''''''
.. code:: python
from model_wrapper import SplitClassModelWrapper
classes = ['class1', 'class2', 'class3'...]
X = [[...], [...],]
y = [0, 0, 1, 2, 1...]
model = ...
wrapper = SplitClassModelWrapper(model, classes=classes)
wrapper.train(X, y, val_size=0.2)
X_test = [[...], [...],]
y_test = [0, 1, 1, 2, 1...]
result = wrapper.evaluate(X_test, y_test)
# 0.953125
result = wrapper.predict(X_test)
# [0, 1]
result = wrapper.predict_classes(X_test)
# ['class1', 'class2']
result = wrapper.predict_proba(X_test)
# ([0, 1], array([0.99439645, 0.99190724], dtype=float32))
result = wrapper.predict_classes_proba(X_test)
# (['class1', 'class2'], array([0.99439645, 0.99190724], dtype=float32))
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
model-wrapper-0.0.2.tar.gz
(11.4 kB
view details)
File details
Details for the file model-wrapper-0.0.2.tar.gz
.
File metadata
- Download URL: model-wrapper-0.0.2.tar.gz
- Upload date:
- Size: 11.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 143366457f99dc7c94f77f36ac995e2d23a0798ccaa8e4f37839286f334d1a43 |
|
MD5 | 52d5be190db5bda01b1220c750350a1b |
|
BLAKE2b-256 | f925eaae3441251e904ad44602d1f90b03a71ba04bfbe4d8f3b9264d7e7fb680 |