Skip to main content

Model wrapper for Pytorch, which can training, predict, evaluate, etc.

Project description

Usage Sample ''''''''''''

.. code:: python

    from model_wrapper import SplitClassModelWrapper

    classes = ['class1', 'class2', 'class3'...]
    X = [[...], [...],]
    y = [0, 0, 1, 2, 1...]

    model = ...
    wrapper = SplitClassModelWrapper(model, classes=classes)
    wrapper.train(X, y, val_size=0.2)

    X_test = [[...], [...],]
    y_test = [0, 1, 1, 2, 1...]
    result = wrapper.evaluate(X_test, y_test)
    # 0.953125

    result = wrapper.predict(X_test)
    # [0, 1]

    result = wrapper.predict_classes(X_test)
    # ['class1', 'class2']

    result = wrapper.predict_proba(X_test)
    # ([0, 1], array([0.99439645, 0.99190724], dtype=float32))

    result = wrapper.predict_classes_proba(X_test)
    # (['class1', 'class2'], array([0.99439645, 0.99190724], dtype=float32))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

model-wrapper-0.0.5.tar.gz (11.4 kB view details)

Uploaded Source

File details

Details for the file model-wrapper-0.0.5.tar.gz.

File metadata

  • Download URL: model-wrapper-0.0.5.tar.gz
  • Upload date:
  • Size: 11.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for model-wrapper-0.0.5.tar.gz
Algorithm Hash digest
SHA256 e98cccfb13e60a49d188c3fd93a330573ed15347fd3d6d503a3d1f4467d95fe0
MD5 4c8a46f0d02ff20f423959fa6e4ac983
BLAKE2b-256 45b5c0ead5162e476782e689215bc146a364d7a738d84cc52abd3b61d11b5c4f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page