Skip to main content

Model wrapper for Pytorch, which can training, predict, evaluate, etc.

Project description

Usage Sample ''''''''''''

.. code:: python

    from model_wrapper import SplitClassModelWrapper

    classes = ['class1', 'class2', 'class3'...]
    X = [[...], [...],]
    y = [0, 0, 1, 2, 1...]

    model = ...
    wrapper = SplitClassModelWrapper(model, classes=classes)
    wrapper.train(X, y, val_size=0.2)

    X_test = [[...], [...],]
    y_test = [0, 1, 1, 2, 1...]
    result = wrapper.evaluate(X_test, y_test)
    # 0.953125

    result = wrapper.predict(X_test)
    # [0, 1]

    result = wrapper.predict_classes(X_test)
    # ['class1', 'class2']

    result = wrapper.predict_proba(X_test)
    # ([0, 1], array([0.99439645, 0.99190724], dtype=float32))

    result = wrapper.predict_classes_proba(X_test)
    # (['class1', 'class2'], array([0.99439645, 0.99190724], dtype=float32))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

model-wrapper-0.1.0.tar.gz (11.7 kB view details)

Uploaded Source

File details

Details for the file model-wrapper-0.1.0.tar.gz.

File metadata

  • Download URL: model-wrapper-0.1.0.tar.gz
  • Upload date:
  • Size: 11.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for model-wrapper-0.1.0.tar.gz
Algorithm Hash digest
SHA256 483474da13d25a719cc64cb0b808ef08ef7592ffb5ef2b0521d769b6d3651d26
MD5 e7c345cf151b6ed106c6114a19469002
BLAKE2b-256 29da850050a1e5e2e76839ae6932bc0023f7adcbbccd71eb6c0f94e5410cc37c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page