Skip to main content

Model wrapper for Pytorch, which can training, predict, evaluate, etc.

Project description

Usage Sample ''''''''''''

.. code:: python

    from model_wrapper import SplitClassModelWrapper

    classes = ['class1', 'class2', 'class3'...]
    X = [[...], [...],]
    y = [0, 0, 1, 2, 1...]

    model = ...
    wrapper = SplitClassModelWrapper(model, classes=classes)
    wrapper.train(X, y, val_size=0.2)

    X_test = [[...], [...],]
    y_test = [0, 1, 1, 2, 1...]
    result = wrapper.evaluate(X_test, y_test)
    # 0.953125

    result = wrapper.predict(X_test)
    # [0, 1]

    result = wrapper.predict_classes(X_test)
    # ['class1', 'class2']

    result = wrapper.predict_proba(X_test)
    # ([0, 1], array([0.99439645, 0.99190724], dtype=float32))

    result = wrapper.predict_classes_proba(X_test)
    # (['class1', 'class2'], array([0.99439645, 0.99190724], dtype=float32))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

model-wrapper-0.1.1.tar.gz (11.9 kB view details)

Uploaded Source

File details

Details for the file model-wrapper-0.1.1.tar.gz.

File metadata

  • Download URL: model-wrapper-0.1.1.tar.gz
  • Upload date:
  • Size: 11.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for model-wrapper-0.1.1.tar.gz
Algorithm Hash digest
SHA256 8d7e710f52df6b1670565e78f5520cd74be0cf7a6d55c9684be982ffd2910b35
MD5 1a247da9a967db4220433e33b55d2608
BLAKE2b-256 4d6c25f60ab1f91bdbcfa887dd0c96db68703adcf50cf4913b43d4b765ab1ff1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page