Skip to main content

Versatile solution for sharing apps through secure URLs

Project description

ModelPark

ModelPark provides a versatile platform to share and manage your ML models directly from your machine, offering a convenient Python API to manage these tasks programmatically, including controlling access and publishing applications.

This library provides a more Pythonic way of managing your applications with ModelPark compared to using the CLI directly.

See ModelPark website and platform for more details.

image

image

Features

  • Share models directly from the Python API.
  • Publish and manage applications using the ModelPark Python API.
  • Configure access management according to your needs through Python methods.

Installation

To install ModelPark, you can use pip:

pip install modelpark

Configuration

Ensure Python and pip are installed on your machine. This API interfaces with the ModelPark CLI but manages interactions programmatically through Python.

Usage

Here's how you can use the ModelPark Python package:

Initialize and Login

from modelpark import ModelPark

mp = ModelPark() # downloads the modelpark CLI binary/ executable to your home folder as "~/modelpark'
mp.login(username="your_username", password="your_password")
mp.init()

clear cache while init (remove existing modelpark CLI binaries from system)

from modelpark import ModelPark

mp = ModelPark(clear_cache=True)

Register an Application

Register an app running on a certain port

mp.register(port=3000, name="my-app", access="public") 
# access='private' if private (not visible/ accessible in modelpark dashboard)

Register a password protected app running on a certain port

mp.register_port(port=3000, name="my-app", access="public", password='123')

Register an app running on a certain port

mp.register_port(port=3000, name="my-app", access="public")

Register a streamlit app that is not run yet (this starts the app as well)

mp.run_with_streamlit_and_register(port=3000, name="my-app", file_path="~/my-app/streamlit-app.py", access="public", framework="streamlit")
# generic registration also works >> 
# mp.register(port=3000, name="my-app", file_path="~/my-app/streamlit-app.py", access="public", framework="streamlit")

Register a streamlit app that is not run yet

mp.register(port=3000, name="my-app", file_path="~/my-app/streamlit-app.py", access="public", framework="streamlit")

Register a Fast API app while deploying

add register_port within startup_event() function in FAST API app

@app.on_event("startup")
async def startup_event():
    mp.register_port(port=5000, name="my-fast-api", access="public") 

List Registered Applications

mp.ls()
# or mp.status()

Stop and Logout

mp.stop()
mp.logout()

Kill an Application

mp.kill(name="my-app")

Kill all the registrations in this session

mp.kill(all=True)

Make an API Call to a Registered Application

from modelpark import APIManager
mp_api = APIManager()

user_credentials = {'username': 'your_username', 'password': 'your_password'}
app_name = 'my-app'
extension = 'api_extension' # or None
password = 'psw' # or None if no password protection
request_payload = {'key': 'value'}  # Payload required by the application

# Make the API call
response = mp_api.make_api_call(app_name, user_credentials, request_payload=request_payload, password=password, extension=extension)
print(response.json())  # Assuming the response is in JSON format

# get an access token to hit a modelpark api endpoint

import requests

expire ='7d' # x days or None
password = '1234' # or None if no password protection
auth_token = mp_api.get_auth_token(user_credentials)
access_token = mp_api.get_access_token(app_name, auth_token, password=password, expire=expire)

headers = {
    "x-access-token": access_token}

query = {'key': 'value'} 

requests.get(url, headers=headers, params=query).json()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

modelpark-0.1.18.tar.gz (6.9 kB view details)

Uploaded Source

Built Distribution

modelpark-0.1.18-py3-none-any.whl (7.0 kB view details)

Uploaded Python 3

File details

Details for the file modelpark-0.1.18.tar.gz.

File metadata

  • Download URL: modelpark-0.1.18.tar.gz
  • Upload date:
  • Size: 6.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for modelpark-0.1.18.tar.gz
Algorithm Hash digest
SHA256 81785316aa2024d38a02e960708b1925762c1f85bb50cd9f9cdbc264ab155937
MD5 0d0b3203db6a631418b9d60ea95840db
BLAKE2b-256 b931070318caaa816db99d84163708a24c934f430f10f16b753baba45e991e8c

See more details on using hashes here.

File details

Details for the file modelpark-0.1.18-py3-none-any.whl.

File metadata

  • Download URL: modelpark-0.1.18-py3-none-any.whl
  • Upload date:
  • Size: 7.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for modelpark-0.1.18-py3-none-any.whl
Algorithm Hash digest
SHA256 452ab227f04d159a69783b8854d0316573deee5119d968542e1b964ea05269f0
MD5 ef7641577250891450e8d3034e51730e
BLAKE2b-256 d8459e0364f90edfb0a2ffe44738b30f8f350b9f89f0b9ad9f61140463a56015

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page