Skip to main content

A set of extension component, inluding components for conversational input and display in multimodal scenarios, as well as more components for vertical scenarios.

Project description

Modelscope Gradio Components

✖️

🤖 Modelscope Studio | 🤗 HuggingFace Space
中文  |  English

ModelScope_Gradio_Components is a set of extension component libraries based on gradio 4.x, dedicated to serving the various extension needs of gradio applications within the ModelScope Studio. It mainly focuses on enhancing conversational scenarios, supporting multimodal contexts, and providing assistance for various other specialized scenarios.

Install

pip install modelscope_gradio_components

Quickstart

import time
import gradio as gr
import modelscope_gradio_components as mgr

def submit(_input, _chatbot):
    print('text:', _input.text)
    print('files: ', _input.files)
    _chatbot.append([_input, None])
    yield _chatbot
    time.sleep(1)
    _chatbot[-1][1] = [{
        "flushing": False,
        "text": 'bot1: ' + _input.text + '!'
    }, {
        "text": 'bot2: ' + _input.text + '!'
    }]
    yield {
        chatbot: _chatbot,
    }

with gr.Blocks() as demo:
    chatbot = mgr.Chatbot(height=400)

    input = mgr.MultimodalInput()
    input.submit(fn=submit, inputs=[input, chatbot], outputs=[chatbot])

demo.queue().launch()

quickstart

Component Docs

The currently supported components include:

  • Chatbot: gradio Chatbot extension component, supports multi-modal content output, multi-bot scenarios, and custom rendering components and event interactions within the conversation content.
  • MultimodalInput: A multi-modal input box, supporting functions such as file upload, recording, and photography.
  • Markdown: gradio Markdown extension component, supports the output of multi-modal content (audio, video, voice, files, text).
  • ImageGallery (WIP): gradio Gallery extension component, supports waterfall-style image display.
  • More components are being updated...

For detailed usage, see Documentation and Examples

Development

Clone this repo locally:

git clone git@github.com:modelscope/modelscope-gradio-components.git
cd modelscope-gradio-components
# for backend
pip install -e '.'
# for frontend
npm install pnpm -g

pnpm install
pnpm build

Run demo!

gradio docs/app.py

or run a single demo like this:

gradio docs/components/Chatbot/demos/basic.py

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file modelscope_gradio_components-0.0.1b10.tar.gz.

File metadata

File hashes

Hashes for modelscope_gradio_components-0.0.1b10.tar.gz
Algorithm Hash digest
SHA256 ea68a5f97c3351724996d27bfa708ebaa4b5d31a485a45ad2d2b67e4320c6ac6
MD5 4ffd935cdb3304648bb99d1ae79d39b0
BLAKE2b-256 ca52af8829f5e4a23ce1d1948340c94b40a5c5e918628c51ff706c5bf36cbc8f

See more details on using hashes here.

File details

Details for the file modelscope_gradio_components-0.0.1b10-py3-none-any.whl.

File metadata

File hashes

Hashes for modelscope_gradio_components-0.0.1b10-py3-none-any.whl
Algorithm Hash digest
SHA256 e7ae68494c6819afcf5521eafccb14aa95cb13d65b293a523e149811a14af576
MD5 5163abf1921e58b889ae38eda85b6696
BLAKE2b-256 5d7d8053948cb29a785baa36c093c419d33e68717014eb1ccc25e243741d4f98

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page