Better insights into Machine Learning models performance
Project description
Welcome to modelsight
Better insights into Machine Learning models performance.
Modelsight is a collection of functions that create publication-ready graphics for the visual evaluation of cross-validated binary classifiers adhering to the scikit-learn interface.
While the majority of modelsight
functionalities are compatible with any binary classifier that follows scikit-learn's interface, it's worth noting that, as of now, some features are exclusive to ExplainableBoostingClassifier from the interpretml package.
Overview | |
---|---|
Open Source | |
CI/CD | |
Code |
💫 Features
Our objective is to enhance the visual assessment of cross-validated binary classifiers by introducing a set of functions tailored for generating publication-ready plots.
To effectively utilize modelsight, you should provide a dictionary where the keys represent model names, and the values consist of CVModellingOutput objects. CVModellingOutput is a custom data class designed to encapsulate the results of a cross-validation process for a specific binary classifier. For detailed information about CVModellingOutput, please refer to the API reference.
Before using the functionalities offered by this library, ensure that your cross-validation data adheres to this structure.
Module | Status | Links |
---|---|---|
Calibration | maturing | Tutorial · API Reference |
Curves | maturing | Tutorial · API Reference |
:eyeglasses: Install modelsight
- Operating system: macOS X · Linux
- Python version: 3.10 (only 64-bit)
- Package managers: pip
pip
Using pip, modelsight releases are available as source packages and binary wheels. You can see all available wheels here.
$ pip install modelsight
:zap: Quickstart
The following code will cross-validate five different binary classifiers and produce a dictionary of CVModellingOutput.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold, RepeatedStratifiedKFold
from sklearn.metrics import roc_curve
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from interpret.glassbox import ExplainableBoostingClassifier
from tests.utils import (
select_features,
get_feature_selector,
get_calibrated_model
)
from modelsight._typing import CVModellingOutput, Estimator
# Load data
X, y = load_breast_cancer(return_X_y=True, as_frame=True)
# Define factory for binary classifiers
class BinaryModelFactory:
def get_model(self, model_name: str) -> Estimator:
if model_name == "EBM":
return ExplainableBoostingClassifier(random_state=cv_config.get("SEED"),
interactions=6,
learning_rate=0.02,
min_samples_leaf=5,
n_jobs=-1)
elif model_name == "LR":
return LogisticRegression(penalty="elasticnet",
solver="saga",
l1_ratio=0.3,
max_iter=10000,
random_state=cv_config.get("SEED"))
elif model_name == "SVC":
return SVC(probability=True,
class_weight="balanced",
random_state=cv_config.get("SEED"))
elif model_name == "RF":
return RandomForestClassifier(random_state=cv_config.get("SEED"),
n_estimators=5,
max_depth=3,
n_jobs=-1)
elif model_name == "KNN":
return KNeighborsClassifier(n_jobs=-1)
else:
raise ValueError(f"{model_name} is not a valid estimator name.")
cv_config = {
"N_REPEATS": 2,
"N_SPLITS": 10,
"SHUFFLE": True,
"SCALE": False,
"CALIBRATE": True,
"CALIB_FRACTION": 0.15,
"SEED": 1303
}
# define outer and inner cross-validation schemes
outer_cv = RepeatedStratifiedKFold(n_repeats=cv_config.get("N_REPEATS"),
n_splits=cv_config.get("N_SPLITS"),
random_state=cv_config.get("SEED"))
inner_cv = StratifiedKFold(n_splits=cv_config.get("N_SPLITS"),
shuffle=cv_config.get("SHUFFLE"),
random_state=cv_config.get("SEED"))
# define models names, factory and cv results dictionary
models_names = ["EBM", "LR", "SVC", "RF", "KNN"]
model_factory = BinaryModelFactory()
cv_results = dict()
for model_name in models_names:
print(f"Processing model {model_name}\n")
gts_train = []
gts_val = []
probas_train = []
probas_val = []
gts_train_conc = []
gts_val_conc = []
probas_train_conc = []
probas_val_conc = []
models = []
errors = []
correct = []
features = []
for i, (train_idx, val_idx) in enumerate(outer_cv.split(X, y)):
Xtemp, ytemp = X.iloc[train_idx, :], y.iloc[train_idx]
Xval, yval = X.iloc[val_idx, :], y.iloc[val_idx]
if cv_config.get("CALIBRATE"):
Xtrain, Xcal, ytrain, ycal = train_test_split(Xtemp, ytemp,
test_size=cv_config.get(
"CALIB_FRACTION"),
stratify=ytemp,
random_state=cv_config.get("SEED"))
else:
Xtrain, ytrain = Xtemp, ytemp
model = model_factory.get_model(model_name)
# select features
feat_subset = select_features(Xtrain, ytrain,
selector=get_feature_selector(
cv_config.get("SEED")),
cv=inner_cv,
scale=False,
frac=1.25)
features.append(feat_subset)
if cv_config.get("SCALE"):
numeric_cols = Xtrain.select_dtypes(
include=[np.float64, np.int64]).columns.tolist()
scaler = StandardScaler()
Xtrain.loc[:, numeric_cols] = scaler.fit_transform(
Xtrain.loc[:, numeric_cols])
Xtest.loc[:, numeric_cols] = scaler.transform(
Xtest.loc[:, numeric_cols])
model.fit(Xtrain.loc[:, feat_subset], ytrain)
if cv_config.get("CALIBRATE"):
model = get_calibrated_model(model,
X=Xcal.loc[:, feat_subset],
y=ycal)
models.append(model)
# accumulate ground-truths
gts_train.append(ytrain)
gts_val.append(yval)
# accumulate predictions
train_pred_probas = model.predict_proba(Xtrain.loc[:, feat_subset])[:, 1]
val_pred_probas = model.predict_proba(Xval.loc[:, feat_subset])[:, 1]
probas_train.append(train_pred_probas)
probas_val.append(val_pred_probas)
# identify correct and erroneous predictions according to the
# classification cut-off that maximizes the Youden's J index
fpr, tpr, thresholds = roc_curve(ytrain, train_pred_probas)
idx = np.argmax(tpr - fpr)
youden = thresholds[idx]
labels_val = np.where(val_pred_probas >= youden, 1, 0)
# indexes of validation instances misclassified by the model
error_idxs = Xval[(yval != labels_val)].index
errors.append(error_idxs)
# indexes of correct predictions
correct.append(Xval[(yval == labels_val)].index)
# CV results for current model
curr_est_results = CVModellingOutput(
gts_train=gts_train,
gts_val=gts_val,
probas_train=probas_train,
probas_val=probas_val,
gts_train_conc=np.concatenate(gts_train),
gts_val_conc=np.concatenate(gts_val),
probas_train_conc=np.concatenate(probas_train),
probas_val_conc=np.concatenate(probas_val),
models=models,
errors=errors,
correct=correct,
features=features
)
cv_results[model_name] = curr_est_results
Plot the average receiver-operating characteristic (ROC) curves
from modelsight.curves import (
average_roc_curves,
roc_comparisons,
add_annotations
)
model_names = list(cv_results.keys())
alpha = 0.05
alph_str = str(alpha).split(".")[1]
alpha_formatted = f".{alph_str}"
roc_symbol = "*"
palette = [Colors.green2, Colors.blue, Colors.yellow, Colors.violet, Colors.darksalmon]
n_boot = 100
f, ax = plt.subplots(1, 1, figsize=(8, 8))
kwargs = dict()
f, ax, barplot, bars, all_data = average_roc_curves(cv_results,
colors=palette,
model_keys=model_names,
show_ci=True,
n_boot=n_boot,
bars_pos=[
0.3, 0.01, 0.6, 0.075*len(model_names)],
random_state=cv_config.get("SEED"),
ax=ax,
**kwargs)
roc_comparisons_results = roc_comparisons(cv_results, "EBM")
kwargs = dict(space_between_whiskers = 0.07)
order = [
("EBM", "RF"),
("EBM", "SVC"),
("EBM", "LR"),
("EBM", "KNN")
]
ax_annot = add_annotations(roc_comparisons_results,
alpha = 0.05,
bars=bars,
direction = "vertical",
order = order,
symbol = roc_symbol,
symbol_fontsize = 30,
voffset = -0.05,
ext_voffset=0,
ext_hoffset=0,
ax=barplot,
**kwargs)
This produces the following plot:
Assess calibration of the ExplaianbleBoostingClassifier across
We will now compute median Brier score (95% CI) of the ExplainableBoostingClassifier and use it to annotate the calibration plot.
from sklearn.metrics import brier_score_loss
from modelsight.calibration import hosmer_lemeshow_plot
briers = []
for gt, preds in zip(cv_results["EBM"].gts_val, cv_results["EBM"].probas_val):
brier = brier_score_loss(gt, preds)
briers.append(brier)
brier_low, brier_med, brier_up = np.percentile(briers, [2.5, 50, 97.5])
brier_annot = f"{brier_med:.2f} ({brier_low:.2f} - {brier_up:.2f})"
f, ax = plt.subplots(1, 1, figsize=(11,6))
f, ax = hosmer_lemeshow_plot(cv_results["EBM"].gts_val_conc,
cv_results["EBM"].probas_val_conc,
n_bins=10,
colors=(Colors.darksalmon, Colors.green2),
annotate_bars=True,
title="",
brier_score_annot=brier_annot,
ax=ax
)
This produces the following plot:
:gift_heart: Contributing
Interested in contributing? Check out the contributing guidelines. Please note that this project is released with a Code of Conduct. By contributing to this project, you agree to abide by its terms.
🛣️ Roadmap
Features:
- Calibration module to assess calibration of ML predicted probabilities via Hosmer-Lemeshow plot
- Average Receiver-operating characteristic curves
- Average Precision-recall curves
- Feature importance (Global explanation)
- Individualized explanations (Local explanation)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file modelsight-0.4.0.tar.gz
.
File metadata
- Download URL: modelsight-0.4.0.tar.gz
- Upload date:
- Size: 32.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.6.1 CPython/3.10.11 Darwin/22.5.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 74291321db584e7a0aefb196b3e43bc093a8d6ebe2af8c30f8b7b0e7d55a8b52 |
|
MD5 | 63092c42d934f4d266335092c8044952 |
|
BLAKE2b-256 | cea8d9a3246147dcc284384a80920a235c82292635e60c2b214f3dbf12a36286 |
File details
Details for the file modelsight-0.4.0-py3-none-any.whl
.
File metadata
- Download URL: modelsight-0.4.0-py3-none-any.whl
- Upload date:
- Size: 31.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.6.1 CPython/3.10.11 Darwin/22.5.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9fe534f0f5cca40d98c5ae6970b0d7f59f470494e12d21ff813dd6459dbe3d61 |
|
MD5 | 14f08a2b08a084b746fd2f72cb70718e |
|
BLAKE2b-256 | e6d9c2e502e8b6b64c860d078b5ae9391f199d3bc3e53f30eba01ded56e655b3 |