Skip to main content

Better insights into Machine Learning models performance

Project description

Welcome to modelsight

Better insights into Machine Learning models performance.

Modelsight is a collection of functions that create publication-ready graphics for the visual evaluation of binary classifiers adhering to the scikit-learn interface.

Modelsight is strongly oriented towards the evaluation of already fitted ExplainableBoostingClassifier of the interpretml package.

Overview
Code !pypi !python-versions

💫 Features

Our goal is to streamline the visual assessment of binary classifiers by creating a set of functions designed to generate publication-ready plots.

Module Status Links
Calibration maturing Tutorial · API Reference
Curves maturing Tutorial · API Reference

:eyeglasses: Install modelsight

  • Operating system: macOS X · Linux
  • Python version: 3.10 (only 64-bit)
  • Package managers: pip

pip

Using pip, modelsight releases are available as source packages and binary wheels. You can see all available wheels here.

$ pip install modelsight

:zap: Quickstart

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import StratifiedKFold, RepeatedStratifiedKFold
from interpret.glassbox import ExplainableBoostingClassifier

from utils import (
    select_features, 
    get_feature_selector, 
    get_model, 
    get_calibrated_model
)

from modelsight.curves import average_roc_curves
from modelsight.config import settings
from modelsight._typing import CVModellingOutput, Estimator

X, y = load_breast_cancer(return_X_y=True, as_frame=True)

outer_cv = RepeatedStratifiedKFold(n_repeats=cv_config.get("N_REPEATS"), 
                        n_splits=cv_config.get("N_SPLITS"), 
                        random_state=settings.misc.seed)
inner_cv = StratifiedKFold(n_splits=cv_config.get("N_SPLITS"), 
                        shuffle=cv_config.get("SHUFFLE"),
                        random_state=settings.misc.seed)

gts_train = []
gts_val = []
probas_train = []
probas_val = []
gts_train_conc = []
gts_val_conc = []
probas_train_conc = []
probas_val_conc = []

models = []
errors = []
correct = []
features = []

ts = datetime.timestamp(datetime.now())
cv_config = {
    "N_REPEATS": 10,
    "N_SPLITS": 10,
    "SHUFFLE": True,
    "SCALE": False,
    "CALIBRATE": True,
    "CALIB_FRACTION": 0.15,
}

for i, (train_idx, val_idx) in enumerate(outer_cv.split(X, y)):
    Xtemp, ytemp = X.iloc[train_idx, :], y.iloc[train_idx]
    Xval, yval = X.iloc[val_idx, :], y.iloc[val_idx]

    if cv_config.get("CALIBRATE"):
        Xtrain, Xcal, ytrain, ycal = train_test_split(Xtemp, ytemp, 
                                test_size=cv_config.get("CALIB_FRACTION"), 
                                stratify=ytemp, 
                                random_state=settings.misc.seed)
    else:
        Xtrain, ytrain = Xtemp, ytemp
    
    model = get_model(seed=settings.misc.seed)

    # select features
    feat_subset = select_features(Xtrain, ytrain, 
                                selector=get_feature_selector(settings.misc.seed), 
                                cv=inner_cv,
                                scale=False,
                                frac=1.25)
    features.append(feat_subset)

    if cv_config.get("SCALE"):
        numeric_cols = Xtrain.select_dtypes(include=[np.float64, np.int64]).columns.tolist()
        scaler = StandardScaler()
        Xtrain.loc[:, numeric_cols] = scaler.fit_transform(Xtrain.loc[:, numeric_cols])
        Xtest.loc[:, numeric_cols] = scaler.transform(Xtest.loc[:, numeric_cols])            

    model.fit(Xtrain[feat_subset], ytrain)

    if cv_config.get("CALIBRATE"):
        model = get_calibrated_model(model, 
                                    X=Xcal.loc[:, feat_subset],
                                    y=ycal)
    
    models.append(model)

    # accumulate ground-truths
    gts_train.append(ytrain)
    gts_val.append(yval)

    # accumulate predictions
    train_pred_probas = model.predict_proba(Xtrain)[:, 1]
    val_pred_probas = model.predict_proba(Xval)[:, 1]

    probas_train.append(train_pred_probas)
    probas_val.append(val_pred_probas)      
    
    # identify correct and erroneous predictions according to the 
    # classification cut-off that maximizes the Youden's J index
    fpr, tpr, thresholds = roc_curve(ytrain, train_pred_probas)
    idx = np.argmax(tpr - fpr)
    youden = thresholds[idx]

    labels_val = np.where(val_pred_probas >= youden, 1, 0)

    # indexes of validation instances misclassified by the model
    error_idxs = Xval[(yval != labels_val)].index
    errors.append(error_idxs)
    
    # indexes of correct predictions
    correct.append(Xval[(yval == labels_val)].index)
    
    
cv_results = CVModellingOutput(
    gts_train = np.array(gts_train),
    gts_val = np.array(gts_val),
    probas_train = np.array(probas_train),
    probas_val = np.array(probas_val),
    gts_train_conc = np.concatenate(gts_train),
    gts_val_conc = np.concatenate(gts_val),
    probas_train_conc = np.concatenate(probas_train),
    probas_val_conc = np.concatenate(probas_val),
    models = models,
    errors = np.array(errors),
    correct = np.array(correct),
    features = np.array(features)
)

# Plot the average receiver-operating characteristic (ROC) curve
model_names = ["EBM"]
alpha = 0.05
alph_str = str(alpha).split(".")[1]
alpha_formatted = f".{alph_str}"
roc_symbol = "*"
n_boot = 100
kwargs = dict()

f, ax = plt.subplots(1, 1, figsize=(8, 8))

f, ax, barplot, bars, aucs_cis = average_roc_curves(cv_results,
                                                    colors=palette,
                                                    model_keys=model_names,
                                                    show_ci=True,
                                                    n_boot=n_boot,
                                                    bars_pos=[
                                                        0.5, 0.01, 0.4, 0.1*len(model_names)],
                                                    random_state=settings.misc.seed,
                                                    ax=ax,
                                                    **kwargs)

:gift_heart: Contributing

Interested in contributing? Check out the contributing guidelines. Please note that this project is released with a Code of Conduct. By contributing to this project, you agree to abide by its terms.

🛣️ Roadmap

Features:

  • Calibration module to assess calibration of ML predicted probabilities via Hosmer-Lemeshow plot
  • Average Receiver-operating characteristic curves
  • Average Precision-recall curves
  • Feature importance (Global explanation)
  • Individualized explanations (Local explanation)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

modelsight-0.3.0.tar.gz (27.4 kB view hashes)

Uploaded Source

Built Distribution

modelsight-0.3.0-py3-none-any.whl (27.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page