Skip to main content

Compare results from simulations with observations.

Project description

ModelSkill: Flexible Model skill evaluation.

Python version Python package PyPI version

ModelSkill is a python package for scoring MIKE models (other models can be evaluated as well).

Contribute with new ideas in the discussion, report an issue or browse the documentation. Access observational data (e.g. altimetry data) from the sister library WatObs.

Use cases

ModelSkill would like to be your companion during the different phases of a MIKE modelling workflow.

  • Model setup - exploratory phase
  • Model calibration
  • Model validation and reporting - communicate your final results

Installation

From pypi:

> pip install modelskill

Or the development version:

> pip install https://github.com/DHI/modelskill/archive/main.zip

Example notebooks

Workflow

  1. Define ModelResults
  2. Define Observations
  3. Match Observations and ModelResults
  4. Do plotting, statistics, reporting using the Comparer

Read more about the workflow in the getting started guide.

Example of use

Start by defining model results and observations:

>>> import modelskill as ms
>>> mr = ms.DfsuModelResult("HKZN_local_2017_DutchCoast.dfsu", name="HKZN_local", item=0)
>>> HKNA = ms.PointObservation("HKNA_Hm0.dfs0", item=0, x=4.2420, y=52.6887, name="HKNA")
>>> EPL = ms.PointObservation("eur_Hm0.dfs0", item=0, x=3.2760, y=51.9990, name="EPL")
>>> c2 = ms.TrackObservation("Alti_c2_Dutch.dfs0", item=3, name="c2")

Then, connect observations and model results, and extract data at observation points:

>>> cc = ms.match([HKNA, EPL, c2], mr)

With the comparer object, cc, all sorts of skill assessments and plots can be made:

>>> cc.skill().round(2)
               n  bias  rmse  urmse   mae    cc    si    r2
observation                                                
HKNA         385 -0.20  0.35   0.29  0.25  0.97  0.09  0.99
EPL           66 -0.08  0.22   0.20  0.18  0.97  0.07  0.99
c2           113 -0.00  0.35   0.35  0.29  0.97  0.12  0.99

Overview of observation locations

ms.plotting.spatial_overview([HKNA, EPL, c2], mr, figsize=(7,7))

map

Scatter plot

cc.plot.scatter()

scatter

Timeseries plot

Timeseries plots can either be static and report-friendly (matplotlib) or interactive with zoom functionality (plotly).

cc["HKNA"].plot.timeseries(width=1000, backend="plotly")

timeseries

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

modelskill-1.0b1.tar.gz (604.2 kB view details)

Uploaded Source

Built Distribution

modelskill-1.0b1-py3-none-any.whl (115.7 kB view details)

Uploaded Python 3

File details

Details for the file modelskill-1.0b1.tar.gz.

File metadata

  • Download URL: modelskill-1.0b1.tar.gz
  • Upload date:
  • Size: 604.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for modelskill-1.0b1.tar.gz
Algorithm Hash digest
SHA256 1396b35bbd35e93fe5542935d946d980a5b23ecfa69ffa12606b96bd10b87d84
MD5 89edb7e406047b1fa1bd811e0e73c952
BLAKE2b-256 0ba9ad7dd0fed7d8eeb0364ffa15eaab0f4918ad1710049fd39e369e8f6878f6

See more details on using hashes here.

File details

Details for the file modelskill-1.0b1-py3-none-any.whl.

File metadata

  • Download URL: modelskill-1.0b1-py3-none-any.whl
  • Upload date:
  • Size: 115.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for modelskill-1.0b1-py3-none-any.whl
Algorithm Hash digest
SHA256 c0b696e79808116768a4b97bb9b22e0b866ca01fad7feaf27eadf89a79ea371a
MD5 97faac13d220b41e17227d0953ddd931
BLAKE2b-256 72a4310b542705eb80eeeed10ad353b2a70907e90d4eb5c71c83f879373b5c0e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page