Used in modelwhale
Project description
Introduction
mwutils is a package developed to be used in the ModelWhale platform for machine learning experiments tracking. It is now under active development.
At the moment, mwutils supports keras and PyTorch mwutils has experimental support for Tensorflow
Usage
class Run: methods:
-
init(self, name="lab_run", user_id="user1", lab_id="lab1", org_id="", flush_interval_seconds=5, sys_stat_sample_size=5, sys_stat_sample_interval=5, local_path='', write_logs_to_local=False, remote_path='', buffer_all_logs=False):
- name: name for current experiment
- user_id, lab_id, org_id: user shall get these information from the notebook tools panel in ModelWhale Notebook interface.
- flush_interval_seconds: time interval to flush buffered logs, default is 5
- sys_stat_sample_size: maximum data size for system metrics, default is 5
- sys_stat_sample_interval: sampling rate for system metrics, default is 5
- write_logs_to_local: if logs should be stored locally
- local_path: local path to store logs
- remote_path: kesci api
- buffer_all_logs: if all logs should be buffered in RAM (use with caution)
-
init_ml():
-
start_ml():
-
log_ml(step=None, epoch=None, batch=None, loss=None, acc=None, phase="train"):
- step, epoch, batch: starting from 1;
- loss: numpy.float32 woulde be converted to float type;
- acc: numpy.float32 woulde be converted to float type;
- phase: default is train, test, val, system
-
conclude(show_memoize=True): call function after training end
- show_memoize:
-
add_memoize_funcs_to_logger: testing;
Keras:
provide MWCustomCallback method
example
from mwutils.keras import MWCustomCallback
from mwutils.run import Run
r = Run(name=RUN_NAME,
user_id = $user_id,
lab_id = $lab_id,
org_id = $org_id,
flush_interval_seconds=30,
sys_stat_sample_size=5,
sys_stat_sample_interval=5,
local_path='',
write_logs_to_local=False,
remote_path= $remote_path,
buffer_all_logs=True)
callBack = MWCustomCallback()
callBack.set_run(r)
history = model.fit(X_train, y_train,
epochs = 40,
batch_size = 32,
validation_data=(X_test,y_test),
shuffle=True,
callbacks=[callBack])
r.conclude()
PyTorch:
provide LoggerHook
method
example
from mwutils.torch_utils import LoggerHook
from mwutils.run import Run
r = Run(name=RUN_NAME,
user_id = $user_id,
lab_id = $lab_id,
org_id = $org_id,
flush_interval_seconds=30,
sys_stat_sample_size=5,
sys_stat_sample_interval=5,
local_path='',
write_logs_to_local=False,
remote_path= $remote_path,
buffer_all_logs=True)
loggerHook = LoggerHook()
loggerHook.set_run(r)
criterion.register_forward_hook(loggerHook.torch_loss_hook)
r.conclude()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file modelwhaleutils-0.5.2.6.tar.gz
.
File metadata
- Download URL: modelwhaleutils-0.5.2.6.tar.gz
- Upload date:
- Size: 12.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9e0c0c581fb2ebab6f57c1199f47ac8ac88df5c569e0356c99e010c8d84a77bf |
|
MD5 | efa9724cf4a99479a49493ba2d1d83f9 |
|
BLAKE2b-256 | 835751d5bb21a6c7a9a2c6c089cdcf50f2864969417f55d0b0cabcd190dfb716 |
File details
Details for the file modelwhaleutils-0.5.2.6-py3-none-any.whl
.
File metadata
- Download URL: modelwhaleutils-0.5.2.6-py3-none-any.whl
- Upload date:
- Size: 14.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ed0c7b4bba09d17c3e7eb9f6ec5b635f2f0e65e4f5e595cd615ac39cf766bffc |
|
MD5 | fcb526a4eeb188c846dee7a0689efe48 |
|
BLAKE2b-256 | 49e07dfa4ba5202fc263edcfb2218eb518b08c69b5b4d5341cc2f57623c2b121 |