ModeYOLO is a versatile Python package designed for efficient color space transformations and simplified dataset modification for deep learning applications. Seamlessly integrating into your workflow, this package empowers users to effortlessly perform diverse color operations and streamline the creation of modified datasets, enhancing the flexibility and convenience of machine learning model training processes.
Project description
ModeYOLO Python Package
Introduction
ModeYOLO is a Python package designed to perform color space transformations on images and facilitate the creation of modified datasets for training deep learning models. The package consists of two main modules: ColorOperation.py
and Operation.py
.
Folder Structure
Before using the package, ensure that your source dataset follows the following folder structure:
dataset/
|-- train/
| |-- images/
| |-- labels/
|-- test/
| |-- images/
| |-- labels/
|-- val/
| |-- images/
| |-- labels/
|-- data.yaml
ColorOperation Module (ColorOperation.py
)
Class: colorcng
Constructor
def __init__(self, path: str, mode: str = 'all') -> None:
"""
Initializes the colorcng object.
Parameters:
- path: str, path to the target directory.
- mode: str, mode of operation ('all', 'rgb', 'bgr', 'gray', 'hsv', 'crcb', 'lab').
"""
Methods
-
cng_rgb
def cng_rgb(self, opt: str, img: np.ndarray, idx: int | str = 0) -> None: """ Converts the image to RGB color space. Parameters: - opt: str, operation type ('train', 'test', 'val'). - img: np.ndarray, input image. - idx: int | str, index for the output file name. """
-
cng_bgr
def cng_bgr(self, opt: str, img: np.ndarray, idx: int | str = 0) -> None: """ Saves the image in BGR color space. Parameters: - opt: str, operation type ('train', 'test', 'val'). - img: np.ndarray, input image. - idx: int | str, index for the output file name. """
-
cng_gray
def cng_gray(self, opt: str, img: np.ndarray, idx: int | str = 0) -> None: """ Converts the image to grayscale. Parameters: - opt: str, operation type ('train', 'test', 'val'). - img: np.ndarray, input image. - idx: int | str, index for the output file name. """
-
cng_hsv
def cng_hsv(self, opt: str, img: np.ndarray, idx: int | str = 0) -> None: """ Converts the image to HSV color space. Parameters: - opt: str, operation type ('train', 'test', 'val'). - img: np.ndarray, input image. - idx: int | str, index for the output file name. """
-
cng_crcb
def cng_crcb(self, opt: str, img: np.ndarray, idx: int | str = 0) -> None: """ Converts the image to YCrCb color space. Parameters: - opt: str, operation type ('train', 'test', 'val'). - img: np.ndarray, input image. - idx: int | str, index for the output file name. """
-
cng_lab
def cng_lab(self, opt: str, img: np.ndarray, idx: int | str = 0) -> None: """ Converts the image to LAB color space. Parameters: - opt: str, operation type ('train', 'test', 'val'). - img: np.ndarray, input image. - idx: int | str, index for the output file name. """
-
execute
def execute(self, opt: str, file: str, idx: int | str = 0) -> None: """ Executes the specified color space transformation. Parameters: - opt: str, operation type ('train', 'test', 'val'). - file: str, path to the input image. - idx: int | str, index for the output file name. """
Operation Module (Operation.py
)
Class: InitOperation
Constructor
def __init__(self, target_directory: str = 'modified_dataset', src_directory: str = 'dataset', mode: str = 'all') -> None:
"""
Initializes the InitOperation object.
Parameters:
- target_directory: str, path to the target directory.
- src_directory: str, path to the source dataset directory.
- mode: str, mode of operation ('all', 'rgb', 'bgr', 'gray', 'hsv', 'crcb', 'lab').
"""
Methods
-
start_train
def start_train(self) -> None: """ Creates the modified training dataset. """
-
start_test
def start_test(self) -> None: """ Creates the modified testing dataset. """
-
start_val
def start_val(self) -> None: """ Creates the modified validation dataset. """
-
reform_dataset
def reform_dataset(self) -> None: """ Reformats the entire dataset. """
Example Usage
# Import the InitOperation class
from ModeYOLO.Operation import InitOperation
# Create an InitOperation object
init_op = InitOperation(target_directory='modified_dataset', src_directory='dataset', mode='all')
# Create the modified dataset
init_op.reform_dataset()
This example assumes that the source dataset is structured according to the specified folder structure. Adjust the paths and parameters accordingly based on your dataset structure.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file modeyolo-0.1.3.tar.gz
.
File metadata
- Download URL: modeyolo-0.1.3.tar.gz
- Upload date:
- Size: 4.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.10.11 Windows/10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d23d55132b4eaf90b5d99df6ffa267eeaa44c5abf56e5fe6a54417fc2e093d9 |
|
MD5 | 369f0764f139f926eb29d9324b2b61d5 |
|
BLAKE2b-256 | f33dc4cc377bae87bcaf0e05826a481dd6d1ee01c834c4d8e4f7938a1861d7f4 |
File details
Details for the file modeyolo-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: modeyolo-0.1.3-py3-none-any.whl
- Upload date:
- Size: 5.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.10.11 Windows/10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 92fda184c1393c20e19cdf7135ae36048d82b835b6a716f1f41d9321eb20bc2c |
|
MD5 | 23119d0d5618db335d1eefb139d33631 |
|
BLAKE2b-256 | 7310380f93bef2238e0db70ccd41e4a64dca1162322e3050f07eb7ebbb69c5e6 |