Skip to main content

MODI: Multicommodity Optimal Transport-based Dynamics for Image Classification

Project description

Click me! ⬆️🖱️


MODI: Multicommodity Optimal Transport Dynamics on Images

ARXIV: 2205.02938 Treedom PyPI Version Run Pytest Open in Colab

⚠ Important note:
MODI is currently under reconstruction, thus you may find some inconsistencies in its documentation. In case you have problems using the code, please do not hesitate to contact us.

MODI (Multicommodity Optimal transport Dynamics on Images) is a Python implementation of the algorithms used in:

This is a scheme capable of performing supervised classification by finding multicommodity optimal transport paths between a pair of images.

If you use this code, please cite [1].
The symbol “*” denotes equal contribution.

Requirements

All the dependencies needed to run the algorithm can be installed using the following command:

pip install modi-flows

Please note that as of the latest release, the scikit-umfpack package is no longer a mandatory requirement for modi-flows. However, we highly recommend installing it to take advantage of enhanced performance. If you choose to install scikit-umfpack, it can be easily obtained from the conda repository:

conda install -c conda-forge scikit-umfpack

Now, you are ready to use the code! To do so, you can simply use the notebook dashboard.ipynb, from which you can access our solver.

Here's the directory structure:

What's included

  • src/modi_flows: Contains all the scripts necessary to run MODI.
  • notebooks: Holds user-friendly Jupyter notebooks, such as dashboard.ipynb, which allow you to interact with the code and visualize results.
  • data: Contains input data used in the examples.
    • input: Holds a small sample of images taken from [2]. These images can be preprocessed using code/dashboard.ipynb. The complete dataset can be downloaded as a .zip file from the Harvard Dataverse.
  • misc: Includes supplementary files such as the MODI poster.
  • tests: Contains test scripts to validate the functionality of the code.
  • docs: Contains documentation files, including Sphinx configuration and source files.

[2] Marco Seeland, Michael Rzanny, Nedal Alaqraa, Jana Wäldchen, and Patrick Mäder, Jena Flowers 30 Dataset, Harvard Dataverse (2017).

Contacts

For any issues or questions, feel free to contact us sending an email to:

License

Copyright (c) 2022 Alessandro Lonardi, Diego Baptista and Caterina De Bacco

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

modi-flows-0.1.7.tar.gz (6.2 MB view details)

Uploaded Source

Built Distribution

modi_flows-0.1.7-py3-none-any.whl (15.4 kB view details)

Uploaded Python 3

File details

Details for the file modi-flows-0.1.7.tar.gz.

File metadata

  • Download URL: modi-flows-0.1.7.tar.gz
  • Upload date:
  • Size: 6.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.17

File hashes

Hashes for modi-flows-0.1.7.tar.gz
Algorithm Hash digest
SHA256 6939ffd6ffbad92264c0389a76bfe64cc934ac2282fce38795e81a475b17d637
MD5 5bf2147dfebbb03038abde801eb5022d
BLAKE2b-256 563436c4bfd16735582919cbbb3a35318eb515cf9d143b6c87bc6ebf5be522f2

See more details on using hashes here.

File details

Details for the file modi_flows-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: modi_flows-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 15.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.17

File hashes

Hashes for modi_flows-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 bea70a07063fbb03eef381b7fcfb25ff34f5b1471a7e7428b7bec7f78b7f9877
MD5 dbea2e25aedc449cc45657479f6e2a77
BLAKE2b-256 8cde422d9067990260bc39bf658457923a3e1a33c8b7cd10898c265478b10944

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page