Skip to main content

A wrapped package to linearize the nonlinear continuous/discrete model. Including **numerical** and **symbolic** calculations.

Project description

Model linearization function toolbox

A wrapped package to linearize the nonlinear continuous/discrete model. Including numerical and symbolic calculations.

If you have questions, remarks, technical issues etc. feel free to use the issues page of this repository. I am looking forward to your feedback and the discussion.

Github project: link

Introduction: link


I. How to use

This package operates within the Python framework.

1. Required packages

  • Numpy
  • Matplotlib
  • Control
  • CasADi     <-- 3 <= version <= 4

2. Usage

  • Download the modlinear file and save it to your project directory.

  • Or install using pip

    pip install modlinear

Then you can use the modlinear in your python project.

II. modlinear toolbox organization

. 
└── modlinear 
    ├── cas_linearize 
    ├── linearize_continuous 
    ├── linearize_c2d
    ├── continuous_to_discrete
    └── plot_matrix

Detailed introduction of each function can be found using help in python.

1. cas_linearize

Symbolic calculation

Obtain the linearized continuous/discrete A, B symbolic functions for the continuous/discrete ODE.

  • Continuous/discrete A, B from continuous ODE
  • Discrete A, B from discrete ODE

Due to symbolic functions, the A, B at any expand state can be easily obtained by giving the state values.

2. linearize_continuous

Numerical calculation

Obtain the linearized continuous A, B matrices for the continuous ODE.

3. linearize_c2d

Numerical calculation

Obtain the linearized discrete A, B matrices for the continuous ODE.

4. continuous_to_discrete

Numerical calculation

Obtain the discrete model from the continuous model, utilizing control package.

5. plot_matrix

Plot a matrix.

II. Linearization process

  1. Indicate the set-point that will be expanded: $x_{ss}, u_{ss}, p_{ss}$.
  2. Compute the Jacobian of the system and obtain $A$, $B$, $M$, and $C$ matrix of the continuous linear system.

    $(x_{t+1} - x_{ss}) = A (x_t - x_{ss}) + B (u_{t} - u_{ss}) + M (p_{t} - p_{ss})$

    $y_k = C x_k$

    which equals to: $(x_{k+1} - x_{ss}) = A (x_k - x_{ss}) + [B, M] [u_k - u_{ss}, z_k -z_{ss}]^T$

  3. Transform the continuous linear system to discrete linear system and obtain $A_{dis}$, $B_{dis}$, $M_{dis}$, and $C_{dis}$.

    $(x_{k+1} - x_{ss}) = A_{dis} (x_k - x_{ss}) + B_{dis} (u_{k} - u_{ss}) + M_{dis} (p_{k} - p_{ss})$

    $y_k = C_{dis} x_k$

Note: This procedure is applicable to all systems.

III. Tutorial

There is a tutorial example to illustrate how to use the modlinear to linearize nonlinear models.

License

The project is released under the APACHE license. See LICENSE for details.

Copyright 2024 Xuewen Zhang

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

modlinear-1.0.2.tar.gz (16.8 kB view details)

Uploaded Source

Built Distribution

modlinear-1.0.2-py3-none-any.whl (17.3 kB view details)

Uploaded Python 3

File details

Details for the file modlinear-1.0.2.tar.gz.

File metadata

  • Download URL: modlinear-1.0.2.tar.gz
  • Upload date:
  • Size: 16.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.12

File hashes

Hashes for modlinear-1.0.2.tar.gz
Algorithm Hash digest
SHA256 584009dec1de575f8ec5a4a406fa92632fb2a91d8c4e4af8ca3a7c914fd6f998
MD5 5dbe20bea39114a89bc5b1db110dbff3
BLAKE2b-256 ed9780eeb7599a7056740093293423b69fa2e14340f68666033c6ec3615445d9

See more details on using hashes here.

File details

Details for the file modlinear-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: modlinear-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 17.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.12

File hashes

Hashes for modlinear-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 dcc8f28d941fb8a773b1a9a422ca2115b3ba6ddcd4acbc5f2dc30d558cb54334
MD5 e2bf4082ed1e9d1ed897b5b00bb1c018
BLAKE2b-256 433a46efe07a6f295bc6cf8ff6984a605030c291bafb0328ca57c29d9ab8d99d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page