Skip to main content

Gather module dependencies of source code

Project description

Module Dependencies

Brief overview

The module_dependencies Python module allows you to gather the dependencies of specific modules in source code. It has been split into two main sections: Module and Source.

The former, Module, supports functionality for mapping a module name to the usage of that module within open source repositories. This is very useful when we are interested in determining which sections of a Python module is most frequently used. For example:

from module_dependencies import Module
from pprint import pprint

# Attempt to find 1000 imports of the "nltk" module
# in both Python files and Jupyter Notebooks each
module = Module("nltk", count="1000")
print(module.usage())
module.plot()

This program outputs:

[2022-01-03 14:14:39,127] [module_dependencies.module.session] [INFO    ] - Fetching Python source code containing imports of `nltk`...
[2022-01-03 14:14:42,824] [module_dependencies.module.session] [INFO    ] - Fetched Python source code containing imports of `nltk` (status code 200)
[2022-01-03 14:14:42,825] [module_dependencies.module.session] [INFO    ] - Parsing 6,830,859 bytes of Python source code as JSON...
[2022-01-03 14:14:42,865] [module_dependencies.module.session] [INFO    ] - Parsed 6,830,859 bytes of Python source code as JSON...
[2022-01-03 14:14:42,866] [module_dependencies.module.session] [INFO    ] - Extracting dependencies of 725 files of Python source code...
Parsing Files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 725/725 [00:02<00:00, 258.48files/s]
[2022-01-03 14:14:45,702] [module_dependencies.module.session] [INFO    ] - Extracted dependencies of 725 files of Python source code.
[2022-01-03 14:14:45,703] [module_dependencies.module.session] [INFO    ] - Fetching Jupyter Notebook source code containing imports of `nltk`...
[2022-01-03 14:14:48,726] [module_dependencies.module.session] [INFO    ] - Fetched Jupyter Notebook source code containing imports of `nltk` (status code 200)
[2022-01-03 14:14:48,726] [module_dependencies.module.session] [INFO    ] - Parsing 25,713,281 bytes of Jupyter Notebook source code as JSON...
[2022-01-03 14:14:48,886] [module_dependencies.module.session] [INFO    ] - Parsed 25,713,281 bytes of Jupyter Notebook source code as JSON...
[2022-01-03 14:14:48,888] [module_dependencies.module.session] [INFO    ] - Extracting dependencies of 495 files of Jupyter Notebook source code...
Parsing Files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 495/495 [00:02<00:00, 167.09files/s]
[2022-01-03 14:14:51,851] [module_dependencies.module.session] [INFO    ] - Extracted dependencies of 495 files of Jupyter Notebook source code.
[('nltk.tokenize.word_tokenize', 327),
('nltk.download', 298),
('nltk.corpus.stopwords.words', 257),
('nltk.tokenize.sent_tokenize', 126),
('nltk.stem.porter.PorterStemmer', 115),
('nltk.stem.wordnet.WordNetLemmatizer', 99),
('nltk.tag.pos_tag', 75),
('nltk.stem.snowball.SnowballStemmer', 48),
('nltk.data.path.append', 42),
('nltk.probability.FreqDist', 42),
('nltk.tokenize.RegexpTokenizer', 42),
('nltk.tokenize.TweetTokenizer', 35),
('nltk.corpus.wordnet.synsets', 33),
('nltk.data.load', 32),
('nltk.translate.bleu_score.corpus_bleu', 29)]

And then opens an interactive version of the following plot: usage

(Note that the true plot is interactive, but this copy for GitHub is just a png)

With the methods provided in the Module class, it becomes elementary to see which sections of code are frequently used, allowing you to prioritise these sections over rarely used sections.


module_dependencies also provides Source, wich implements functionality for mapping Python source code to the dependencies and imports within that file. For example:

from module_dependencies import Source
from pprint import pprint

# This creates a Source instance for this file itself
src = Source.from_file(__file__)

pprint(src.dependencies())
pprint(src.imports())

This program outputs:

['module_dependencies.Source.from_file', 'pprint.pprint']
['module_dependencies', 'pprint']

Documentation

More detailed documentation, including examples and an API Reference, can be found in the online documentation.

Installation

module_dependencies can be installed directly via pip. It is recommended to set up a virtualenvironment before installation, although this is not strictly a requirement.

The command to install module_dependencies is:

pip install module_dependencies

Note that module_dependencies requires Python 3.8 onwards.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

module_dependencies-0.2.2.tar.gz (21.0 kB view details)

Uploaded Source

Built Distribution

module_dependencies-0.2.2-py2.py3-none-any.whl (25.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file module_dependencies-0.2.2.tar.gz.

File metadata

  • Download URL: module_dependencies-0.2.2.tar.gz
  • Upload date:
  • Size: 21.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for module_dependencies-0.2.2.tar.gz
Algorithm Hash digest
SHA256 49bb7cde7c66ff56a8b0b40a551fceee97226f19535117951fa95b0f10e3e11c
MD5 0bb694b1c7ac4638246ce160fa2edb0b
BLAKE2b-256 22f4441c8a387557fddfd54cca39a981060649fa10d2b99cf7b6d1682aec8fc4

See more details on using hashes here.

File details

Details for the file module_dependencies-0.2.2-py2.py3-none-any.whl.

File metadata

  • Download URL: module_dependencies-0.2.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 25.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for module_dependencies-0.2.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 9cf3533595830a0bc242df76354e8730a4d78592b398411414ba479c0904a8b8
MD5 68f086a8484c35e121d32a323f623e03
BLAKE2b-256 3e23d5569f7d6b35408890f52f4c29387a3992b8a819cad76b77f63f21ce7ccd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page