Skip to main content

Pure-Python library for working with modular arithmetic, congruence classes, and finite fields.

Project description

Pure-Python library for working with modular arithmetic, congruence classes, and finite fields.

PyPI version and link. Read the Docs documentation status. GitHub Actions status. Coveralls test coverage summary.

Purpose

The library allows users to work with congruence classes (including finite field elements) as objects, with support for many common operations.

Installation and Usage

This library is available as a package on PyPI:

python -m pip install modulo

The library can be imported in the usual way:

from modulo import modulo

Examples

This library makes it possible to work with congruence classes (and sets of congruence classes such as finite fields) as objects. A congruence class is defined using a representative integer and a modulus:

>>> from modulo import modulo
>>> modulo(3, 7)
modulo(3, 7)

Built-in operators can be used to perform modular addition, modular subtraction, and modular negation of congruence classes:

>>> modulo(3, 7) + modulo(5, 7)
modulo(1, 7)
>>> modulo(1, 7) - modulo(4, 7)
modulo(4, 7)
>>> -modulo(5, 7)
modulo(2, 7)

Modular multiplication, division, inversion, and exponentiation are also supported (when they are defined):

>>> modulo(3, 7) * modulo(5, 7)
modulo(1, 7)
>>> modulo(1, 7) // modulo(3, 7)
modulo(5, 7)
>>> modulo(5, 7) ** 2
modulo(4, 7)
>>> modulo(5, 7) ** (-1)
modulo(3, 7)

Individual congruence classes can be compared with one another according to their least nonnegative residues (and, thus, can also be sorted):

>>> mod(2, 7) < mod(3, 7)
True
>>> list(sorted([mod(2, 3), mod(1, 3), mod(0, 3)]))
[modulo(0, 3), modulo(1, 3), modulo(2, 3)]

The membership operation is supported between integers and congruence classes:

>>> 3 in mod(3, 7)
True
>>> 10 in mod(3, 7)
True
>>> 4 in mod(3, 7)
False

A set of congruence classes such as a finite field can also be defined. The built-in length function len and the membership operator are supported:

>>> len(modulo(7))
7
>>> modulo(3, 7) in modulo(7)
True

The built-in int function can be used to retrieve the least nonnegative residue of a congruence class and the built-in len function can be used to retrieve the modulus of a congruence class or set of congruence classes (this is the recommended approach):

>>> c = modulo(3, 7)
>>> int(c)
3
>>> len(c)
7

Congruence classes and sets of congruence classes are also hashable (making it possible to use them as dictionary keys and as set members) and iterable:

>>> len({mod(0, 3), mod(1, 3), mod(2, 3)})
3
>>> list(mod(4))
[modulo(0, 4), modulo(1, 4), modulo(2, 4), modulo(3, 4)]
>>> from itertools import islice
>>> list(islice(mod(3, 7), 5))
[3, 10, 17, 24, 31]

The Chinese remainder theorem can be applied to construct the intersection of two congruence classes as a congruence class (when it is possible to do so):

>>> mod(23, 100) & mod(31, 49)
modulo(423, 4900)
>>> mod(2, 10) & mod(4, 20) is None
True

Some familiar forms of notation for referring to congruence classes (and sets thereof) are also supported:

>>> Z/(23*Z)
modulo(23)
>>> 23*Z
modulo(0, 23)
>>> 17 + 23*Z
modulo(17, 23)

Development

All installation and development dependencies are fully specified in pyproject.toml. The project.optional-dependencies object is used to specify optional requirements for various development tasks. This makes it possible to specify additional options (such as docs, lint, and so on) when performing installation using pip:

python -m pip install .[docs,lint]

Documentation

The documentation can be generated automatically from the source files using Sphinx:

python -m pip install .[docs]
cd docs
sphinx-apidoc -f -E --templatedir=_templates -o _source .. && make html

Testing and Conventions

All unit tests are executed and their coverage is measured when using pytest (see the pyproject.toml file for configuration details):

python -m pip install .[test]
python -m pytest

Alternatively, all unit tests are included in the module itself and can be executed using doctest:

python src/modulo/modulo.py -v

Style conventions are enforced using Pylint:

python -m pip install .[lint]
python -m pylint src/modulo

Contributions

In order to contribute to the source code, open an issue or submit a pull request on the GitHub page for this library.

Versioning

Beginning with version 0.2.0, the version number format for this library and the changes to the library associated with version number increments conform with Semantic Versioning 2.0.0.

Publishing

This library can be published as a package on PyPI by a package maintainer. First, install the dependencies required for packaging and publishing:

python -m pip install .[publish]

Ensure that the correct version number appears in pyproject.toml, and that any links in this README document to the Read the Docs documentation of this package (or its dependencies) have appropriate version numbers. Also ensure that the Read the Docs project for this library has an automation rule that activates and sets as the default all tagged versions. Create and push a tag for this version (replacing ?.?.? with the version number):

git tag ?.?.?
git push origin ?.?.?

Remove any old build/distribution files. Then, package the source into a distribution archive:

rm -rf build dist src/*.egg-info
python -m build --sdist --wheel .

Finally, upload the package distribution archive to PyPI:

python -m twine upload dist/*

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

modulo-2.1.0.tar.gz (13.3 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

modulo-2.1.0-py3-none-any.whl (11.5 kB view details)

Uploaded Python 3

File details

Details for the file modulo-2.1.0.tar.gz.

File metadata

  • Download URL: modulo-2.1.0.tar.gz
  • Upload date:
  • Size: 13.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.2

File hashes

Hashes for modulo-2.1.0.tar.gz
Algorithm Hash digest
SHA256 87f5100d176835052e16970af062ce68f90eefc408bb58955fcbbc99bffe5858
MD5 647d718d9e9658efe27df2c3f2dc6aae
BLAKE2b-256 8df16870979dda274664a26af843dbb3f3a6daa2ab171fb44b2dba5c9ae4089a

See more details on using hashes here.

File details

Details for the file modulo-2.1.0-py3-none-any.whl.

File metadata

  • Download URL: modulo-2.1.0-py3-none-any.whl
  • Upload date:
  • Size: 11.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.2

File hashes

Hashes for modulo-2.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 bdd5106ae5ef2a02385372d8eca8ec73a38a91118bb0ad100f419c40cfdb9abf
MD5 2ff96bf1364ed303e7597f7f96a88895
BLAKE2b-256 3cebb556bd47c98675d4998abcfa245abc38e2b8bf120b74557558b6a23e2a63

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page