moftransformer
Project description
MOFTransformer
This package provides universal transfer learing for metal-organic frameworks(MOFs) to construct structure-property relationships. MOFTransformer
obtains state-of-the-art performance to predict accross various properties that include gas adsorption, diffusion, electronic properties regardless of gas types. Beyond its universal transfer learning capabilityies, it provides feature importance analysis from its attentions scores to capture chemical intution.
Install
OS and hardware requirements
The package development version is tested on following systems:
Linux : Ubuntu 20.04, 22.04
For optimal performance, we recommend running with GPUs
Depedencies
python>=3.8
Given that MOFTransformer is based on pytorch, please install pytorch (>= 1.10.0) according to your environments.
Installation using PIP
$ pip install moftransformer
which should install in about 50 seconds.
Download the pretrained model (ckpt file)
- you can download the pretrained model with 1 M hMOFs in figshare or you can download with a command line:
$ moftransformer download pretrain_model
(Optional) Download dataset for CoREMOF, QMOF
- we've provide the dataset of MOFTransformer (i.e., atom-based graph embeddings and energy-grid embeddings) for CoREMOF, QMOF
$ moftransformer download coremof
$ moftransformer download qmof
Getting Started
- At first, you can run
prepare_data
with 10 cifs inmoftransformer/examples/raw
directory.
In order to run prepare_data
, you need to install GRIDAY
to calculate energy grid.
You can download GRIDAY using command-line.
$ moftransformer install-griday
Example for running prepare-data
from moftransformer.examples import example_path
from moftransformer.utils import prepare_data
# Get example path
root_cifs = example_path['root_cif']
root_dataset = example_path['root_dataset']
downstream = example_path['downstream']
train_fraction = 0.7
test_fraction = 0.2
# Run prepare data
prepare_data(root_cifs, root_dataset, downstream=downstream,
train_fraciton=train_fraction, test_fraciton=test_fraction)
- Fine-tune the pretrained MOFTransformer.
import moftransformer
from moftransformer.examples import example_path
# data root and downstream from example
root_dataset = example_path['root_dataset']
downstream = example_path['downstream']
log_dir = './logs/'
# kwargs (optional)
max_epochs = 10
batch_size = 8
moftransformer.run(root_dataset, downstream, log_dir=log_dir,
max_epochs=max_epochs, batch_size=batch_size,)
which will run in about 35 seconds.
- Visualize analysis of feature importance for the fine-tuned model.
download finetuned-bandgap model before visualize.
moftransformer download finetuned_model -o ./examples
%matplotlib widget
from moftransformer.visualize import PatchVisualizer
from moftransformer.examples import visualize_example_path
model_path = "examples/finetuned_bandgap.ckpt" # or 'examples/finetuned_h2_uptake.ckpt'
data_path = visualize_example_path
cifname = 'MIBQAR01_FSR'
vis = PatchVisualizer.from_cifname(cifname, model_path, data_path)
vis.draw_graph() # or vis.draw_grid()
Architecture
MOFTransformer
is a multi-modal Transformer pre-trained with 1 million hypothetical MOFs so that it efficiently capture both local and global feeatures of MOFs.
MOFformer
takes two different representations as input- Atom-based Graph Embedding : CGCNN w/o pooling layer -> local features
- Energy-grid Embedding : 1D flatten patches of 3D energy grid -> global features
Feature Importance Anaylsis
you can easily visualize feature importance analysis of atom-based graph embeddings and energy-grid embeddings.
%matplotlib widget
from visualize import PatchVisualizer
model_path = "examples/finetuned_bandgap.ckpt" # or 'examples/finetuned_h2_uptake.ckpt'
data_path = 'examples/visualize/dataset/'
cifname = 'MIBQAR01_FSR'
vis = PatchVisualizer.from_cifname(cifname, model_path, data_path)
vis.draw_graph()
vis.draw_grid()
Universal Transfer Learning
Property | MOFTransformer | Original Paper | Number of Data | Remarks | Reference |
---|---|---|---|---|---|
N2 uptake | R2: 0.78 | R2: 0.71 | 5,286 | CoRE MOF | 1 |
O2 uptake | R2: 0.83 | R2: 0.74 | 5,286 | CoRE MOF | 1 |
N2 diffusivity | R2: 0.77 | R2: 0.76 | 5,286 | CoRE MOF | 1 |
O2 diffusivity | R2: 0.78 | R2: 0.74 | 5,286 | CoRE MOF | 1 |
CO2 Henry coefficient | MAE : 0.30 | MAE : 0.42 | 8,183 | CoRE MOF | 2 |
Solvent removal stability classification | ACC : 0.76 | ACC : 0.76 | 2,148 | Text-mining data | 3 |
Thermal stability regression | R2 : 0.44 | R2 : 0.46 | 3,098 | Text-mining data | 3 |
Reference
- Prediction of O2/N2 Selectivity in Metal−Organic Frameworks via High-Throughput Computational Screening and Machine Learning
- Understanding the diversity of the metal-organic framework ecosystem
- Using Machine Learning and Data Mining to Leverage Community Knowledge for the Engineering of Stable Metal–Organic Frameworks
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for moftransformer-1.1.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e81e1a522956f3bec38cc52179718edd34b897692e2a7696ef7ba4be2ca30934 |
|
MD5 | a26089ec8e5df297c24e4414be5322bf |
|
BLAKE2b-256 | d14d4456ffed4185d67bbb7624c203ed9d21205b080d01e729e89afda693f847 |