Skip to main content

Topological Data Analysis in Python

Project description

mogutda: Topological Data Analysis in Python

CircleCI GitHub release Documentation Status Updates Python 3 pypi download stars

Introduction

mogutda contains Python codes that demonstrate the numerical calculation of algebraic topology in an application to topological data analysis (TDA). Its core code is the numerical methods concerning implicial complex, and the estimation of homology and Betti numbers.

Topological data analysis aims at studying the shapes of the data, and draw some insights from them. A lot of machine learning algorithms deal with distances, which are extremely useful, but they miss the information the data may carry from their geometry.

History

The codes in this package were developed as a demonstration of a few posts of my blog. It was not designed to be a Python package but a pedagogical collection of codes. (See: PyTDA.) However, the codes and the blog posts have been unexpectedly popular. Therefore, I modularized the code into the package mogu. (or corresponding repository: MoguNumerics) However, mogu is simply a collection of unrelated numerical routines with a lot of dependencies, but the part of TDA can be quite independent.

In order to provide other researchers and developers an independent package, which is compact (without unecessary alternative packages to load), and efficient, I decided to modularize the codes of TDA separately, and name this package mogutda.

Prerequisite

It runs under Python 3.8, 3.9, 3.10, and 3.11.

Simple Tutorial: Simplicial Complex

You can install by:

pip install mogutda

To establish a simplicial complex for a torus, type

import numpy as np
from mogutda import SimplicialComplex

torus_sc = [(1,2,4), (4,2,5), (2,3,5), (3,5,6), (5,6,1), (1,6,2), (6,7,2), (7,3,2),
            (1,3,4), (3,4,6), (4,6,7), (4,5,7), (5,7,1), (7,3,1)]
torus_c = SimplicialComplex(simplices=torus_sc)

To retrieve its Betti numbers, type:

print(torus_c.betti_number(0))   # print 1
print(torus_c.betti_number(1))   # print 2
print(torus_c.betti_number(2))   # print 1

Demo Codes and Blog Entries

Codes in this repository are demo codes for a few entries of my blog, Everything about Data Analytics, and the corresponding entries are:

Wolfram Demonstration

Richard Hennigan put a nice Wolfram Demonstration online explaining what the simplicial complexes are, and how homologies are defined:

News

  • 09/19/2024: mogutda 0.4.3 released.
  • 07/16/2024: mogutsa 0.4.2 released.
  • 11/23/2023: mogutda 0.4.1 released.
  • 08/18/2023: mogutda 0.4.0 released.
  • 06/20/2023: mogutda 0.3.5 released.
  • 09/09/2022: mogutda 0.3.4 released.
  • 07/15/2021: mogutda 0.3.3 released.
  • 04/10/2021: mogutda 0.3.2 released.
  • 11/28/2020: mogutda 0.3.1 released.
  • 08/16/2020: mogutda 0.3.0 released.
  • 04/28/2020: mogutda 0.2.1 released.
  • 01/16/2020: mogutda 0.2.0 released.
  • 02/20/2019: mogutda 0.1.5 released.
  • 12/31/2018: mogutda 0.1.4 released.
  • 07/18/2018: mogutda 0.1.3 released.
  • 07/02/2018: mogutda 0.1.2 released.
  • 06/13/2018: mogutda 0.1.1 released.
  • 06/11/2018: mogutda 0.1.0 released.

Other TDA Packages

It is recommended that for real application, you should use the following packages for efficiency, because my codes serve the pedagogical purpose only.

C++

Python

R

Contributions

If you want to contribute, feel free to fork the repository, and submit a pull request whenever you are ready.

If you spot any bugs or issues, go to the Issue page.

I may not approve pull request immediately if your suggested change is big. If you want to incorporate something big, please discuss with me first.

References

  • Afra J. Zomorodian. Topology for Computing (New York, NY: Cambridge University Press, 2009). [Amazon]
  • Afra J. Zomorodian. "Topological Data Analysis," Proceedings of Symposia in Applied Mathematics (2011). [link]
  • Afra Zomorodian, Gunnar Carlsson, “Computing Persistent Homology,” Discrete Comput. Geom. 33, 249-274 (2005). [pdf]
  • Gunnar Carlsson, “Topology and Data”, Bull. Amer. Math. Soc. 46, 255-308 (2009). [link]
  • Jeffrey Ray, Marcello Trovati, "A Survey of Topological Data Analysis (TDA) Methods Implemented in Python," in Advances in Intelligent Networking and Collaborative Systems, Springer (2018).
  • P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson, M. Alagappan, J. Carlsson, G. Carlsson, “Extracting insights from the shape of complex data using topology”, Sci. Rep. 3, 1236 (2013). [link]
  • Robert Ghrist, “Barcodes: The persistent topology of data,” Bull. Amer. Math. Soc. 45, 1-15 (2008). [pdf]

Links

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mogutda-0.4.3.tar.gz (25.1 kB view details)

Uploaded Source

Built Distribution

mogutda-0.4.3-py3-none-any.whl (9.1 kB view details)

Uploaded Python 3

File details

Details for the file mogutda-0.4.3.tar.gz.

File metadata

  • Download URL: mogutda-0.4.3.tar.gz
  • Upload date:
  • Size: 25.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.13

File hashes

Hashes for mogutda-0.4.3.tar.gz
Algorithm Hash digest
SHA256 4842e405025b69d75602ef1ac5d7cb592c439fe3ec17e7e7069ebce315e295d0
MD5 ce8d1e86b1349fbb4e44d1a0c2324097
BLAKE2b-256 8611c2907f4c9b595a9f8a42b68254c7c9b33b809f777e688f41183428366f09

See more details on using hashes here.

File details

Details for the file mogutda-0.4.3-py3-none-any.whl.

File metadata

  • Download URL: mogutda-0.4.3-py3-none-any.whl
  • Upload date:
  • Size: 9.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.13

File hashes

Hashes for mogutda-0.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 feab8afff130de126c2286c739976f002afa1097e65f59108b72f4427e360f62
MD5 786681b41a0ad925e86279fbc776ac8d
BLAKE2b-256 df8eb58570910784c8a8891228c28dc4369ce17ab155d2cabc3d8a24b67bc90d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page