Skip to main content

No project description provided

Project description

Author:

Lukas Turcani

Introduction

moldoc is a Sphinx extension for making better chemistry documentation. It allows you to embed 3D, interactive models of molecules directly into your compiled docs. You can see it being used in the stk docs.

moldoc.gif

Installation

First, run

pip install moldoc

and then add it to your extensions in conf.py

extensions = [
    'moldoc',
]

Adding Molecules into Your Docs

You can define molecules you show with the moldoc directive, which you can place it into your rst files

.. moldoc::

    # The content of a moldoc directive is just a Python script
    # which needs to define a moldoc_display_molecule variable.

    import moldoc.molecule as molecule

    moldoc_display_molecule = molecule.Molecule(
        atoms=(
            # molecule.Atom(atomic_number, position)
            molecule.Atom(6, (-0.06, -0.17, 0.)),
            molecule.Atom(17, (-1.35, 1.04, -0.04)),
            molecule.Atom(35, (1.65, 0.73, -0.06)),
            molecule.Atom(1, (-0.15, -0.88, -0.87)),
            molecule.Atom(1, (-0.09, -0.72, 0.97)),
        ),
        bonds=(
            # molecule.Bond(atom1_id, atom2_id, order)
            molecule.Bond(0, 1, 1),
            molecule.Bond(0, 2, 1),
            molecule.Bond(0, 3, 1),
            molecule.Bond(0, 4, 1),
        ),
    )

or in your Python docstrings

def some_fn():
    """
    Do something.

    .. moldoc::

        # The content of a moldoc directive is just a Python script
        # which needs to define a moldoc_display_molecule variable.

        import moldoc.molecule as molecule

        moldoc_display_molecule = molecule.Molecule(
            atoms=(
                # molecule.Atom(atomic_number, position)
                molecule.Atom(6, (-0.06, -0.17, 0.)),
                molecule.Atom(17, (-1.35, 1.04, -0.04)),
                molecule.Atom(35, (1.65, 0.73, -0.06)),
                molecule.Atom(1, (-0.15, -0.88, -0.87)),
                molecule.Atom(1, (-0.09, -0.72, 0.97)),
            ),
            bonds=(
                # molecule.Bond(atom1_id, atom2_id, order)
                molecule.Bond(0, 1, 1),
                molecule.Bond(0, 2, 1),
                molecule.Bond(0, 3, 1),
                molecule.Bond(0, 4, 1),
            ),
        )

    """

    print('In some_fn()')

Note that the content in the moldoc directive is a just a Python script, which has to define a moldoc_display_molecule variable holding a moldoc.molecule.Molecule instance.

Because the content of a moldoc directive is just a Python script you can define your molecules programatically

def some_fn():
    """
    Do something.

    .. moldoc::

        # The content of a moldoc directive is just a Python script
        # which needs to define a moldoc_display_molecule variable.

        import moldoc.molecule as molecule

        atoms = [molecule.Atom(6, (i, 0., 0.)) for i in range(10)]
        bonds = [molecule.Bond(i-1, i, 1) for i in range(1, 10)]

        moldoc_display_molecule = molecule.Molecule(
            atoms=atoms,
            bonds=bonds,
        )

    """

    print('In some_fn()')

Configuration

The display of molecules is pretty configurable, here is a snapshot of the different configuration options you have, but note that this is not an exhaustive list

configuration.jpg

Configuration happens on both the molecule and the atom level. For example

.. moldoc::

    # The content of a moldoc directive is just a Python script
    # which needs to define a moldoc_display_molecule variable.

    import moldoc.molecule as molecule

    atoms = [
        molecule.Atom(
            atomic_number=6,
            position=(i, 0., 0.),
            # Configure the atom size and color.
            config=molecule.AtomConfig(
                color=molecule.Color(
                    red=255,
                    green=0,
                    blue=0,
                ),
                size=1.2,
            ),
        ) for i in range(10),
    ]
    bonds = [molecule.Bond(i-1, i, 1) for i in range(1, 10)]

    moldoc_display_molecule = molecule.Molecule(
        atoms=atoms,
        bonds=bonds,
        config=molecule.MoleculeConfig(
            atom_scale=1,
            material=molecule.MeshStandardMaterial(),
            background_color=molecule.Color(0, 255, 0),
            is_outlined=False,
        ),
    )

Note that there are many materials to choose from, and that each has its own set of configuration options. You can see the materials and their configuration options in src/moldoc/molecule.py. Note that the materials correspond to classes in THREE.js, for example https://threejs.org/docs/#api/en/materials/MeshStandardMaterial, so if you wish to understand the configuration options of each material the THREE.js docs are the place to look. Most should be straighforward to understand from the name however.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

moldoc-1.0.1.tar.gz (1.6 MB view details)

Uploaded Source

Built Distribution

moldoc-1.0.1-py3-none-any.whl (218.8 kB view details)

Uploaded Python 3

File details

Details for the file moldoc-1.0.1.tar.gz.

File metadata

  • Download URL: moldoc-1.0.1.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for moldoc-1.0.1.tar.gz
Algorithm Hash digest
SHA256 e7d35deff4698bc5da4470325a613ab2a46c463315ba995953de7678cea6ffb6
MD5 46d5c790b59129e115f9cd8f11d364b1
BLAKE2b-256 8c09d81d91fe5e39dc23e9e96c6688d722848deea227b5de41f8bcac2324c34b

See more details on using hashes here.

File details

Details for the file moldoc-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: moldoc-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 218.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for moldoc-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 0c3a437513c6f199ea18d20dbe91eb02b3fb3a597cbba02ccb255e9745bccff2
MD5 fe02d1681d70dfdc4942edd441705973
BLAKE2b-256 7641d4496b4080d583095f5093407f669b7ad2f1fcb8ec4c4d9b4f0c6863c4ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page