Skip to main content

MOLGENIS Python tooling for BBMRI-ERIC

Project description

molgenis-py-bbmri-eric

MOLGENIS Python tooling for BBMRI-ERIC.

Description

This library contains tools for the MOLGENIS BBMRI-ERIC Directory that help with staging and publishing the data of the national nodes. Staging is the process of copying data from a national node's external server (for example BBMRI-NL) to the staging area on the ERIC directory. Not all national nodes have external servers; these do not need to be staged. Publishing is the process of copying and combining the data from the staging areas to the public combined tables of the directory.

Usage

These tools can be used as a library in a script. Start by installing the library with pip install molgenis-py-bbmri-eric.

For an example of how to use this library to stage and publish nodes, see example.py.

If you just want to retrieve the data of a node for another purpose, you can use the EricSession and ExternalServerSession directly:

from molgenis.bbmri_eric.bbmri_client import EricSession, ExternalServerSession
from molgenis.bbmri_eric.model import NodeData

# Get the staging and published data of NL from the directory
session = EricSession(url="<DIRECTORY_URL")
nl = session.get_external_node("NL")
nl_staging_data: NodeData = session.get_staging_node_data(nl)
nl_published_data: NodeData = session.get_published_node_data(nl)

# Get the data from the external server of NL
external_session = ExternalServerSession(nl)
nl_external_data: NodeData = external_session.get_node_data()

# Now you can use the NodeData objects as you wish
for person in nl_external_data.persons.rows:
    print(person)

For developers

This project uses pre-commit and pipenv for the development workflow.

Install pre-commit and pipenv if you haven't already:

pip install pre-commit
pip install pipenv

Install the git commit hooks:

pre-commit install

Create an environment and install the package including all (dev) dependencies:

pipenv install --dev

Enter the environment:

pipenv shell

Build and run the tests:

tox

Note

This project has been set up using PyScaffold 4.0.2. For details and usage information on PyScaffold see https://pyscaffold.org/.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

molgenis_py_bbmri_eric-1.18.1.tar.gz (86.2 kB view details)

Uploaded Source

Built Distribution

molgenis_py_bbmri_eric-1.18.1-py2.py3-none-any.whl (31.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file molgenis_py_bbmri_eric-1.18.1.tar.gz.

File metadata

File hashes

Hashes for molgenis_py_bbmri_eric-1.18.1.tar.gz
Algorithm Hash digest
SHA256 453a3594e4a80fe8a898c99cf8598eaa2a71837d53ae029a61d1a1ab6685710e
MD5 77d96869d9697abea6442eb63faf8c10
BLAKE2b-256 469973c7c04d0088f21bc037762378bf01c1cbaa675c6c379bf4a8c3bb9070e8

See more details on using hashes here.

File details

Details for the file molgenis_py_bbmri_eric-1.18.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for molgenis_py_bbmri_eric-1.18.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 7a372e3c5879364da29ca30af5592fe39a42951abf6edb61bcfab8b32576950b
MD5 8d44869ff40f49eb2ee0d400c2a5e54e
BLAKE2b-256 dc3654213228a7096083a82b1054204e2727a0056dedc4ffe50f45bd6946aae2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page