Implementations of graph neural networks for molecular machine learning
Project description
MolGraph: Graph Neural Networks for Molecular Machine Learning
This is an early release; things are still being updated and added. Hence, API compatibility may break in the future.
Any feedback is welcomed!
Manuscript
See pre-print
Documentation
See readthedocs
Installation
Install via pip:
pip install molgraph
Install via docker:
git clone https://github.com/akensert/molgraph.git cd molgraph/docker docker build -t molgraph-tf[-gpu][-jupyter]/molgraph:0.0 molgraph-tf[-gpu][-jupyter]/ docker run -it [-p 8888:8888] molgraph-tf[-gpu][-jupyter]/molgraph:0.0
Requirements/dependencies
- Python (version ~= 3.8.10)
- TensorFlow (version ~= 2.7.0)
- RDKit (version ~= 2022.3.3)
- NumPy (version ~= 1.21.2)
- Pandas (version ~= 1.0.3)
Tested with
- Ubuntu 20.04 - Python 3.8.10
- MacOS Monterey (12.3.1) - Python 3.10.3
Minimalistic implementation
A complete GNN implementation for small molecular graphs in about 30 lines of code:
from tensorflow import keras
from molgraph import chemistry
from molgraph import layers
from molgraph import models
# Obtain dataset, specifically ESOL
qm7 = chemistry.datasets.get('esol')
# Define molecular graph encoder
atom_encoder = chemistry.AtomFeaturizer([
chemistry.features.Symbol(),
chemistry.features.Hybridization(),
# ...
])
bond_encoder = chemistry.BondFeaturizer([
chemistry.features.BondType(),
# ...
])
encoder = chemistry.MolecularGraphEncoder(atom_encoder, bond_encoder)
# Obtain features and associated labels
x_train = encoder(qm7['train']['x'])
y_train = qm7['train']['y']
x_test = encoder(qm7['test']['x'])
y_test = qm7['test']['y']
# Build model via Keras API
gnn_model = keras.Sequential([
keras.layers.Input(type_spec=x_train.spec),
layers.GATConv(name='gat_conv_1'),
layers.GATConv(name='gat_conv_2'),
layers.Readout(),
keras.layers.Dense(units=1024, activation='relu'),
keras.layers.Dense(units=y_train.shape[-1])
])
# Compile, fit and evaluate
gnn_model.compile(optimizer='adam', loss='mae')
gnn_model.fit(x_train, y_train, epochs=50)
gnn_model.evaluate(x_test, y_test)
# Compute gradient activation maps
gam_model = models.GradientActivationMapping(
model=gnn_model, layer_names=['gat_conv_1', 'gat_conv_2'])
maps = gam_model.predict(x_train)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
molgraph-0.0.2.tar.gz
(83.6 kB
view details)
Built Distribution
molgraph-0.0.2-py3-none-any.whl
(131.0 kB
view details)
File details
Details for the file molgraph-0.0.2.tar.gz
.
File metadata
- Download URL: molgraph-0.0.2.tar.gz
- Upload date:
- Size: 83.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 301d0a1d7ed9999dee98483554689d687548cfcf6463cfac1b3b14c2a0c11e9b |
|
MD5 | 854a2c370bd4a478a2d92058b1886fa2 |
|
BLAKE2b-256 | 9ef69eb677b9b61321bb514121b1375a1c9dc232ac2a5360f1c512c635f1cad7 |
File details
Details for the file molgraph-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: molgraph-0.0.2-py3-none-any.whl
- Upload date:
- Size: 131.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 91d4398e74d723bfb09dbc75c6dc98047fee34c625b1afd832eb4742de49f363 |
|
MD5 | f42d6d48d0325227f85a6dd34812a4df |
|
BLAKE2b-256 | b2a1560bce6acdb1e13463410db28865571c5ff2c5df784d5d984811595ad69d |