Skip to main content

Implementations of graph neural networks for molecular machine learning

Project description

MolGraph: Graph Neural Networks for Molecular Machine Learning

This is an early release; things are still being updated and added. Hence, API compatibility may break in the future.

Any feedback is welcomed!

Manuscript

See pre-print

Documentation

See readthedocs

Installation

Install via pip:

pip install molgraph

Install via docker:

git clone https://github.com/akensert/molgraph.git
cd molgraph/docker
docker build -t molgraph-tf[-gpu][-jupyter]/molgraph:0.0 molgraph-tf[-gpu][-jupyter]/
docker run -it [-p 8888:8888] molgraph-tf[-gpu][-jupyter]/molgraph:0.0

Requirements/dependencies

  • Python (version ~= 3.8.10)
  • TensorFlow (version ~= 2.7.0)
  • RDKit (version ~= 2022.3.3)
  • NumPy (version ~= 1.21.2)
  • Pandas (version ~= 1.0.3)

Tested with

  • Ubuntu 20.04 - Python 3.8.10
  • MacOS Monterey (12.3.1) - Python 3.10.3

Minimalistic implementation

A complete GNN implementation for small molecular graphs in about 30 lines of code:

from tensorflow import keras
from molgraph import chemistry
from molgraph import layers
from molgraph import models

# Obtain dataset, specifically ESOL
qm7 = chemistry.datasets.get('esol')

# Define molecular graph encoder
atom_encoder = chemistry.AtomFeaturizer([
    chemistry.features.Symbol(),
    chemistry.features.Hybridization(),
    # ...
])

bond_encoder = chemistry.BondFeaturizer([
    chemistry.features.BondType(),
    # ...
])

encoder = chemistry.MolecularGraphEncoder(atom_encoder, bond_encoder)

# Obtain features and associated labels
x_train = encoder(qm7['train']['x'])
y_train = qm7['train']['y']

x_test = encoder(qm7['test']['x'])
y_test = qm7['test']['y']

# Build model via Keras API
gnn_model = keras.Sequential([
    keras.layers.Input(type_spec=x_train.spec),
    layers.GATConv(name='gat_conv_1'),
    layers.GATConv(name='gat_conv_2'),
    layers.Readout(),
    keras.layers.Dense(units=1024, activation='relu'),
    keras.layers.Dense(units=y_train.shape[-1])
])

# Compile, fit and evaluate
gnn_model.compile(optimizer='adam', loss='mae')
gnn_model.fit(x_train, y_train, epochs=50)
gnn_model.evaluate(x_test, y_test)

# Compute gradient activation maps
gam_model = models.GradientActivationMapping(
    model=gnn_model, layer_names=['gat_conv_1', 'gat_conv_2'])

maps = gam_model.predict(x_train)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

molgraph-0.0.2.tar.gz (83.6 kB view details)

Uploaded Source

Built Distribution

molgraph-0.0.2-py3-none-any.whl (131.0 kB view details)

Uploaded Python 3

File details

Details for the file molgraph-0.0.2.tar.gz.

File metadata

  • Download URL: molgraph-0.0.2.tar.gz
  • Upload date:
  • Size: 83.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for molgraph-0.0.2.tar.gz
Algorithm Hash digest
SHA256 301d0a1d7ed9999dee98483554689d687548cfcf6463cfac1b3b14c2a0c11e9b
MD5 854a2c370bd4a478a2d92058b1886fa2
BLAKE2b-256 9ef69eb677b9b61321bb514121b1375a1c9dc232ac2a5360f1c512c635f1cad7

See more details on using hashes here.

File details

Details for the file molgraph-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: molgraph-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 131.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for molgraph-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 91d4398e74d723bfb09dbc75c6dc98047fee34c625b1afd832eb4742de49f363
MD5 f42d6d48d0325227f85a6dd34812a4df
BLAKE2b-256 b2a1560bce6acdb1e13463410db28865571c5ff2c5df784d5d984811595ad69d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page