Skip to main content

Implementations of graph neural networks for molecular machine learning

Project description

MolGraph: Graph Neural Networks for Molecular Machine Learning

This is an early release; things are still being updated and added. Hence, API compatibility may break in the future.

Any feedback is welcomed!

Manuscript

See pre-print

Documentation

See readthedocs

Installation

Install via pip:

pip install molgraph

Install via docker:

git clone https://github.com/akensert/molgraph.git
cd molgraph/docker
docker build -t molgraph-tf[-gpu][-jupyter]/molgraph:0.0 molgraph-tf[-gpu][-jupyter]/
docker run -it [-p 8888:8888] molgraph-tf[-gpu][-jupyter]/molgraph:0.0

Now run your first program with MolGraph:

from tensorflow import keras
from molgraph import chemistry
from molgraph import layers
from molgraph import models

# Obtain dataset, specifically ESOL
qm7 = chemistry.datasets.get('esol')

# Define molecular graph encoder
atom_encoder = chemistry.Featurizer([
    chemistry.features.Symbol(),
    chemistry.features.Hybridization(),
    # ...
])

bond_encoder = chemistry.Featurizer([
    chemistry.features.BondType(),
    # ...
])

encoder = chemistry.MolecularGraphEncoder(atom_encoder, bond_encoder)

# Obtain features and associated labels
x_train = encoder(qm7['train']['x'])
y_train = qm7['train']['y']

x_test = encoder(qm7['test']['x'])
y_test = qm7['test']['y']

# Build model via Keras API
gnn_model = keras.Sequential([
    keras.layers.Input(type_spec=x_train.spec),
    layers.GATConv(name='gat_conv_1'),
    layers.GATConv(name='gat_conv_2'),
    layers.Readout(),
    keras.layers.Dense(units=1024, activation='relu'),
    keras.layers.Dense(units=y_train.shape[-1])
])

# Compile, fit and evaluate
gnn_model.compile(optimizer='adam', loss='mae')
gnn_model.fit(x_train, y_train, epochs=50)
scores = gnn_model.evaluate(x_test, y_test)

# Compute gradient activation maps
gam_model = models.GradientActivationMapping(
    model=gnn_model, layer_names=['gat_conv_1', 'gat_conv_2'])

maps = gam_model.predict(x_train)

Requirements/dependencies

  • Python (version ~= 3.8.10)
  • TensorFlow (version ~= 2.7.0)
  • RDKit (version ~= 2022.3.3)
  • NumPy (version ~= 1.21.2)
  • Pandas (version ~= 1.0.3)

Tested with

  • Ubuntu 20.04 - Python 3.8.10
  • MacOS Monterey (12.3.1) - Python 3.10.3

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

molgraph-0.2.0.tar.gz (83.8 kB view details)

Uploaded Source

Built Distribution

molgraph-0.2.0-py3-none-any.whl (145.2 kB view details)

Uploaded Python 3

File details

Details for the file molgraph-0.2.0.tar.gz.

File metadata

  • Download URL: molgraph-0.2.0.tar.gz
  • Upload date:
  • Size: 83.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for molgraph-0.2.0.tar.gz
Algorithm Hash digest
SHA256 fbd4a50f5f8ca2617ccaf9af9ac2f9f944955e662428fc7884f36af7a98168e5
MD5 5d416be3cbffd94d6c5e202e77f5098b
BLAKE2b-256 155139ddbbf5114e68f6208aaa198f3f300cae24976a1314b8e5dc48bf51c493

See more details on using hashes here.

File details

Details for the file molgraph-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: molgraph-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 145.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for molgraph-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9a43c6668998a5c9f574076ebfec646915ec50b5f17fca4dca898f967380afc7
MD5 1960f4035cd1b20144e1a8c92ef9a43a
BLAKE2b-256 5cc999aee20f2b15fe485794a6134e947ecb67dfd01306895dd50202efa8e668

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page