Skip to main content

Implementations of graph neural networks for molecular machine learning

Project description

MolGraph: Graph Neural Networks for Molecular Machine Learning

This is an early release; things are still being updated and added. Hence, API compatibility may break in the future.

Any feedback is welcomed!

Manuscript

See pre-print

Documentation

See readthedocs

Installation

Install via pip:

pip install molgraph

Install via docker:

git clone https://github.com/akensert/molgraph.git
cd molgraph/docker
docker build -t molgraph-tf[-gpu][-jupyter]/molgraph:0.0 molgraph-tf[-gpu][-jupyter]/
docker run -it [-p 8888:8888] molgraph-tf[-gpu][-jupyter]/molgraph:0.0

Now run your first program with MolGraph:

from tensorflow import keras
from molgraph import chemistry
from molgraph import layers
from molgraph import models

# Obtain dataset, specifically ESOL
qm7 = chemistry.datasets.get('esol')

# Define molecular graph encoder
atom_encoder = chemistry.Featurizer([
    chemistry.features.Symbol(),
    chemistry.features.Hybridization(),
    # ...
])

bond_encoder = chemistry.Featurizer([
    chemistry.features.BondType(),
    # ...
])

encoder = chemistry.MolecularGraphEncoder(atom_encoder, bond_encoder)

# Obtain features and associated labels
x_train = encoder(qm7['train']['x'])
y_train = qm7['train']['y']

x_test = encoder(qm7['test']['x'])
y_test = qm7['test']['y']

# Build model via Keras API
gnn_model = keras.Sequential([
    keras.layers.Input(type_spec=x_train.spec),
    layers.GATConv(name='gat_conv_1'),
    layers.GATConv(name='gat_conv_2'),
    layers.Readout(),
    keras.layers.Dense(units=1024, activation='relu'),
    keras.layers.Dense(units=y_train.shape[-1])
])

# Compile, fit and evaluate
gnn_model.compile(optimizer='adam', loss='mae')
gnn_model.fit(x_train, y_train, epochs=50)
scores = gnn_model.evaluate(x_test, y_test)

# Compute gradient activation maps
gam_model = models.GradientActivationMapping(
    model=gnn_model, layer_names=['gat_conv_1', 'gat_conv_2'])

maps = gam_model.predict(x_train)

Requirements/dependencies

  • Python (version ~= 3.8.10)
  • TensorFlow (version ~= 2.7.0)
  • RDKit (version ~= 2022.3.3)
  • NumPy (version ~= 1.21.2)
  • Pandas (version ~= 1.0.3)

Tested with

  • Ubuntu 20.04 - Python 3.8.10
  • MacOS Monterey (12.3.1) - Python 3.10.3

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

molgraph-0.3.1.tar.gz (92.1 kB view details)

Uploaded Source

Built Distribution

molgraph-0.3.1-py3-none-any.whl (157.7 kB view details)

Uploaded Python 3

File details

Details for the file molgraph-0.3.1.tar.gz.

File metadata

  • Download URL: molgraph-0.3.1.tar.gz
  • Upload date:
  • Size: 92.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for molgraph-0.3.1.tar.gz
Algorithm Hash digest
SHA256 35425f84fa7f18cab9aeb029c0459f293462cd8dae59dc2d2b68e44f4ac90869
MD5 ad3ef897c3e649021c7e7bab1766798e
BLAKE2b-256 9ddba49ac096e343e58ee8a518c6f845e8f37cc2c23c3eb897f7ffeb7dacc396

See more details on using hashes here.

File details

Details for the file molgraph-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: molgraph-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 157.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for molgraph-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3d3416604d4f103fb7a56fbe6d19310a91178a1f47e63175c3338a53566a64ab
MD5 b9ba2d83093e75370e9ea9fb5d50b3ef
BLAKE2b-256 f48e0616fe8db7236916b20ba3da4d011bbff3d878de52465cafd6a03997f4c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page