Skip to main content

Implementations of graph neural networks for molecular machine learning

Project description

MolGraph: Graph Neural Networks for Molecular Machine Learning

This is an early release; things are still being updated, added and experimented with. Hence, API compatibility may break in the future.

Any feedback is welcomed!

Manuscript

See pre-print

Documentation

See readthedocs

Implementations

Installation

Install via pip:

pip install molgraph

Install via docker:

git clone https://github.com/akensert/molgraph.git
cd molgraph/docker
docker build -t molgraph-tf[-gpu][-jupyter]/molgraph:0.0 molgraph-tf[-gpu][-jupyter]/
docker run -it [-p 8888:8888] molgraph-tf[-gpu][-jupyter]/molgraph:0.0

Now run your first program with MolGraph:

from tensorflow import keras
from molgraph import chemistry
from molgraph import layers
from molgraph import models

# Obtain dataset, specifically ESOL
qm7 = chemistry.datasets.get('esol')

# Define molecular graph encoder
atom_encoder = chemistry.Featurizer([
    chemistry.features.Symbol(),
    chemistry.features.Hybridization(),
    # ...
])

bond_encoder = chemistry.Featurizer([
    chemistry.features.BondType(),
    # ...
])

encoder = chemistry.MolecularGraphEncoder(atom_encoder, bond_encoder)

# Obtain features and associated labels
x_train = encoder(qm7['train']['x'])
y_train = qm7['train']['y']

x_test = encoder(qm7['test']['x'])
y_test = qm7['test']['y']

# Build model via Keras API
gnn_model = keras.Sequential([
    keras.layers.Input(type_spec=x_train.spec),
    layers.GATConv(name='gat_conv_1'),
    layers.GATConv(name='gat_conv_2'),
    layers.Readout(),
    keras.layers.Dense(units=1024, activation='relu'),
    keras.layers.Dense(units=y_train.shape[-1])
])

# Compile, fit and evaluate
gnn_model.compile(optimizer='adam', loss='mae')
gnn_model.fit(x_train, y_train, epochs=50)
scores = gnn_model.evaluate(x_test, y_test)

# Compute gradient activation maps
gam_model = models.GradientActivationMapping(
    model=gnn_model, layer_names=['gat_conv_1', 'gat_conv_2'])

maps = gam_model.predict(x_train)

Requirements/dependencies

  • Python (version >= 3.6 recommended)
  • TensorFlow (version >= 2.7.0 recommended)
  • RDKit (version >= 2022.3.3 recommended)
  • NumPy (version >= 1.21.2 recommended)
  • Pandas (version >= 1.0.3 recommended)

Tested with

  • Ubuntu 20.04 - Python 3.8.10
  • MacOS Monterey (12.3.1) - Python 3.10.3

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

molgraph-0.3.10.tar.gz (107.5 kB view details)

Uploaded Source

Built Distribution

molgraph-0.3.10-py3-none-any.whl (170.2 kB view details)

Uploaded Python 3

File details

Details for the file molgraph-0.3.10.tar.gz.

File metadata

  • Download URL: molgraph-0.3.10.tar.gz
  • Upload date:
  • Size: 107.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for molgraph-0.3.10.tar.gz
Algorithm Hash digest
SHA256 a1bf540c46c031c5947b260f7fbd31390cc8ba163384c5cd5796275afdfcd1a0
MD5 db1e787d7575d92d92f460b974f8f2df
BLAKE2b-256 5c83f7b134f535376ce39ca611034ba20876eb19c80610fd3a54a899c9b06089

See more details on using hashes here.

File details

Details for the file molgraph-0.3.10-py3-none-any.whl.

File metadata

  • Download URL: molgraph-0.3.10-py3-none-any.whl
  • Upload date:
  • Size: 170.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for molgraph-0.3.10-py3-none-any.whl
Algorithm Hash digest
SHA256 eea7f20186e9713088f6ec002fa1d2d958370986efb5d9819a27d5a4faf4e51e
MD5 69409f088a8c3eb47a8535ef4b3c1f40
BLAKE2b-256 96533a4e104eda53ee323a1f78559b42a07155dfbfb02b1d90c8828057fc3be2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page