Implementations of graph neural networks for molecular machine learning
Project description
MolGraph: Graph Neural Networks for Molecular Machine Learning
This is an early release; things are still being updated, added and experimented with. Hence, API compatibility may break in the future.
Any feedback is welcomed!
Manuscript
See pre-print
Documentation
See readthedocs
Implementations
- Convolutional
- GCNConv (
GCNConv
) - GCN(E)Conv (
GCNConv
) - GINConv (
GINConv
) - GIN(E)Conv (
GINConv
) - GCNIIConv (
GCNIIConv
) - GraphSageConv (
GraphSageConv
)
- GCNConv (
- Attentional
- GATConv (
GATConv
) - GAT(E)Conv (
GATConv
) - GATv2Conv (
GATv2Conv
) - GAT(E)v2Conv (
GATv2Conv
) - GTConv (
GTConv
) - GT(E)Conv (
GTConv
) - GMMConv (
GMMConv
) - GatedGCNConv (
GatedGCNConv
) - GatedGCN(E)Conv (
GatedGCNConv
) - AttentiveFPConv (
AttentiveFPConv
)
- GATConv (
- Message-passing
- MPNNConv (
MPNNConv
) - EdgeConv (
EdgeConv
)
- MPNNConv (
- Geometric
- DTNNConv (
DTNNConv
) - GCFConv (
GCFConv
)
- DTNNConv (
Installation
Install via pip:
pip install molgraph
Install via docker:
git clone https://github.com/akensert/molgraph.git cd molgraph/docker docker build -t molgraph-tf[-gpu][-jupyter]/molgraph:0.0 molgraph-tf[-gpu][-jupyter]/ docker run -it [-p 8888:8888] molgraph-tf[-gpu][-jupyter]/molgraph:0.0
Now run your first program with MolGraph:
from tensorflow import keras
from molgraph import chemistry
from molgraph import layers
from molgraph import models
# Obtain dataset, specifically ESOL
qm7 = chemistry.datasets.get('esol')
# Define molecular graph encoder
atom_encoder = chemistry.Featurizer([
chemistry.features.Symbol(),
chemistry.features.Hybridization(),
# ...
])
bond_encoder = chemistry.Featurizer([
chemistry.features.BondType(),
# ...
])
encoder = chemistry.MolecularGraphEncoder(atom_encoder, bond_encoder)
# Obtain features and associated labels
x_train = encoder(qm7['train']['x'])
y_train = qm7['train']['y']
x_test = encoder(qm7['test']['x'])
y_test = qm7['test']['y']
# Build model via Keras API
gnn_model = keras.Sequential([
keras.layers.Input(type_spec=x_train.spec),
layers.GATConv(name='gat_conv_1'),
layers.GATConv(name='gat_conv_2'),
layers.Readout(),
keras.layers.Dense(units=1024, activation='relu'),
keras.layers.Dense(units=y_train.shape[-1])
])
# Compile, fit and evaluate
gnn_model.compile(optimizer='adam', loss='mae')
gnn_model.fit(x_train, y_train, epochs=50)
scores = gnn_model.evaluate(x_test, y_test)
# Compute gradient activation maps
gam_model = models.GradientActivationMapping(
model=gnn_model, layer_names=['gat_conv_1', 'gat_conv_2'])
maps = gam_model.predict(x_train)
Requirements/dependencies
- Python (version ~= 3.8.10)
- TensorFlow (version ~= 2.7.0)
- RDKit (version ~= 2022.3.3)
- NumPy (version ~= 1.21.2)
- Pandas (version ~= 1.0.3)
Tested with
- Ubuntu 20.04 - Python 3.8.10
- MacOS Monterey (12.3.1) - Python 3.10.3
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
molgraph-0.3.3.tar.gz
(95.2 kB
view details)
Built Distribution
molgraph-0.3.3-py3-none-any.whl
(163.2 kB
view details)
File details
Details for the file molgraph-0.3.3.tar.gz
.
File metadata
- Download URL: molgraph-0.3.3.tar.gz
- Upload date:
- Size: 95.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 69c2a17b005530af9c0d36a0508397442b428123a45eb369a49e187f735c1274 |
|
MD5 | e9d4f2b479c474197071cd15d5300b0d |
|
BLAKE2b-256 | 946791143060ab8c5b2ed898238551d560978319b4d70d04057a972b521ac697 |
File details
Details for the file molgraph-0.3.3-py3-none-any.whl
.
File metadata
- Download URL: molgraph-0.3.3-py3-none-any.whl
- Upload date:
- Size: 163.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d8a24bbb39d461501a747d29830efa68e68451ad59caad7061fc5ff6b35d8e57 |
|
MD5 | 9ebe5e773fe0335caee7daef5d6f4140 |
|
BLAKE2b-256 | c266971bedaf3b651a3ee15bed7a4f8baf7e224a3046f15898ab01d094805c63 |