Skip to main content

Implementations of graph neural networks for molecular machine learning

Project description

MolGraph: Graph Neural Networks for Molecular Machine Learning

This is an early release; things are still being updated, added and experimented with. Hence, API compatibility may break in the future.

Any feedback is welcomed!

Manuscript

See pre-print

Documentation

See readthedocs

Implementations

  • Convolutional
    • GCNConv (GCNConv)
    • GCN(E)Conv (GCNConv)
    • GINConv (GINConv)
    • GIN(E)Conv (GINConv)
    • GCNIIConv (GCNIIConv)
    • GraphSageConv (GraphSageConv)
  • Attentional
    • GATConv (GATConv)
    • GAT(E)Conv (GATConv)
    • GATv2Conv (GATv2Conv)
    • GAT(E)v2Conv (GATv2Conv)
    • GTConv (GTConv)
    • GT(E)Conv (GTConv)
    • GMMConv (GMMConv)
    • GatedGCNConv (GatedGCNConv)
    • GatedGCN(E)Conv (GatedGCNConv)
    • AttentiveFPConv (AttentiveFPConv)
  • Message-passing
    • MPNNConv (MPNNConv)
    • EdgeConv (EdgeConv)
  • Geometric
    • DTNNConv (DTNNConv)
    • GCFConv (GCFConv)

Installation

Install via pip:

pip install molgraph

Install via docker:

git clone https://github.com/akensert/molgraph.git
cd molgraph/docker
docker build -t molgraph-tf[-gpu][-jupyter]/molgraph:0.0 molgraph-tf[-gpu][-jupyter]/
docker run -it [-p 8888:8888] molgraph-tf[-gpu][-jupyter]/molgraph:0.0

Now run your first program with MolGraph:

from tensorflow import keras
from molgraph import chemistry
from molgraph import layers
from molgraph import models

# Obtain dataset, specifically ESOL
qm7 = chemistry.datasets.get('esol')

# Define molecular graph encoder
atom_encoder = chemistry.Featurizer([
    chemistry.features.Symbol(),
    chemistry.features.Hybridization(),
    # ...
])

bond_encoder = chemistry.Featurizer([
    chemistry.features.BondType(),
    # ...
])

encoder = chemistry.MolecularGraphEncoder(atom_encoder, bond_encoder)

# Obtain features and associated labels
x_train = encoder(qm7['train']['x'])
y_train = qm7['train']['y']

x_test = encoder(qm7['test']['x'])
y_test = qm7['test']['y']

# Build model via Keras API
gnn_model = keras.Sequential([
    keras.layers.Input(type_spec=x_train.spec),
    layers.GATConv(name='gat_conv_1'),
    layers.GATConv(name='gat_conv_2'),
    layers.Readout(),
    keras.layers.Dense(units=1024, activation='relu'),
    keras.layers.Dense(units=y_train.shape[-1])
])

# Compile, fit and evaluate
gnn_model.compile(optimizer='adam', loss='mae')
gnn_model.fit(x_train, y_train, epochs=50)
scores = gnn_model.evaluate(x_test, y_test)

# Compute gradient activation maps
gam_model = models.GradientActivationMapping(
    model=gnn_model, layer_names=['gat_conv_1', 'gat_conv_2'])

maps = gam_model.predict(x_train)

Requirements/dependencies

  • Python (version ~= 3.8.10)
  • TensorFlow (version ~= 2.7.0)
  • RDKit (version ~= 2022.3.3)
  • NumPy (version ~= 1.21.2)
  • Pandas (version ~= 1.0.3)

Tested with

  • Ubuntu 20.04 - Python 3.8.10
  • MacOS Monterey (12.3.1) - Python 3.10.3

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

molgraph-0.3.5.tar.gz (97.7 kB view details)

Uploaded Source

Built Distribution

molgraph-0.3.5-py3-none-any.whl (167.4 kB view details)

Uploaded Python 3

File details

Details for the file molgraph-0.3.5.tar.gz.

File metadata

  • Download URL: molgraph-0.3.5.tar.gz
  • Upload date:
  • Size: 97.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for molgraph-0.3.5.tar.gz
Algorithm Hash digest
SHA256 cfd10fab47088c6f934e445c0f407e5a080048f1e8895f374d609aa85814871e
MD5 3bf295ea16b51cd678791581589aeb74
BLAKE2b-256 88da99fbcb4ca14e9cc51e661da50f272aa98d23e0aeacbb5a14b338338415f9

See more details on using hashes here.

File details

Details for the file molgraph-0.3.5-py3-none-any.whl.

File metadata

  • Download URL: molgraph-0.3.5-py3-none-any.whl
  • Upload date:
  • Size: 167.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for molgraph-0.3.5-py3-none-any.whl
Algorithm Hash digest
SHA256 e3fce9165f08c677a250ba3a07395ca08e502e1d49dad2902aadbee7045c86e7
MD5 461332f461cdedac69873897b5620743
BLAKE2b-256 9c8514d06a5319e360fccd9e1f86b86f96164422d4256470a46fbaf6d3efc873

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page