Implementations of graph neural networks for molecular machine learning
Project description
MolGraph: Graph Neural Networks for Molecular Machine Learning
This is an early release; things are still being updated, added and experimented with. Hence, API compatibility may break in the future.
Any feedback is welcomed!
Manuscript
See pre-print
Documentation
See readthedocs
Implementations
- Convolutional
- Attentional
- GATConv (GATConv)
- GAT(E)Conv (GATConv)
- GATv2Conv (GATv2Conv)
- GAT(E)v2Conv (GATv2Conv)
- GTConv (GTConv)
- GT(E)Conv (GTConv)
- GMMConv (GMMConv)
- GatedGCNConv (GatedGCNConv)
- GatedGCN(E)Conv (GatedGCNConv)
- AttentiveFPConv (AttentiveFPConv)
- Message-passing
- Geometric
Installation
Install via pip:
pip install molgraph
Install via docker:
git clone https://github.com/akensert/molgraph.git cd molgraph/docker docker build -t molgraph-tf[-gpu][-jupyter]/molgraph:0.0 molgraph-tf[-gpu][-jupyter]/ docker run -it [-p 8888:8888] molgraph-tf[-gpu][-jupyter]/molgraph:0.0
Now run your first program with MolGraph:
from tensorflow import keras
from molgraph import chemistry
from molgraph import layers
from molgraph import models
# Obtain dataset, specifically ESOL
qm7 = chemistry.datasets.get('esol')
# Define molecular graph encoder
atom_encoder = chemistry.Featurizer([
chemistry.features.Symbol(),
chemistry.features.Hybridization(),
# ...
])
bond_encoder = chemistry.Featurizer([
chemistry.features.BondType(),
# ...
])
encoder = chemistry.MolecularGraphEncoder(atom_encoder, bond_encoder)
# Obtain features and associated labels
x_train = encoder(qm7['train']['x'])
y_train = qm7['train']['y']
x_test = encoder(qm7['test']['x'])
y_test = qm7['test']['y']
# Build model via Keras API
gnn_model = keras.Sequential([
keras.layers.Input(type_spec=x_train.spec),
layers.GATConv(name='gat_conv_1'),
layers.GATConv(name='gat_conv_2'),
layers.Readout(),
keras.layers.Dense(units=1024, activation='relu'),
keras.layers.Dense(units=y_train.shape[-1])
])
# Compile, fit and evaluate
gnn_model.compile(optimizer='adam', loss='mae')
gnn_model.fit(x_train, y_train, epochs=50)
scores = gnn_model.evaluate(x_test, y_test)
# Compute gradient activation maps
gam_model = models.GradientActivationMapping(
model=gnn_model, layer_names=['gat_conv_1', 'gat_conv_2'])
maps = gam_model.predict(x_train)
Requirements/dependencies
- Python (version >= 3.6 recommended)
- TensorFlow (version >= 2.7.0 recommended)
- RDKit (version >= 2022.3.3 recommended)
- NumPy (version >= 1.21.2 recommended)
- Pandas (version >= 1.0.3 recommended)
Tested with
- Ubuntu 20.04 - Python 3.8.10
- MacOS Monterey (12.3.1) - Python 3.10.3
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
molgraph-0.3.9.tar.gz
(104.4 kB
view details)
Built Distribution
molgraph-0.3.9-py3-none-any.whl
(166.5 kB
view details)
File details
Details for the file molgraph-0.3.9.tar.gz
.
File metadata
- Download URL: molgraph-0.3.9.tar.gz
- Upload date:
- Size: 104.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 998511ec0d7d5c18f0f2b09a6cac9b046e1ffc25b6c76bff0405ba889608893f |
|
MD5 | 5fe8785a3d08836d444027f28c990a5c |
|
BLAKE2b-256 | 4a064747764c076eca58d91362250c7d751139b430316d597348b991ecb090cc |
File details
Details for the file molgraph-0.3.9-py3-none-any.whl
.
File metadata
- Download URL: molgraph-0.3.9-py3-none-any.whl
- Upload date:
- Size: 166.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 993b120635f7923a4b8091840c9dca902382d777cb4eadb16d2520e0497a23ac |
|
MD5 | 5be6e61450ede998b8f7a71afa7c5286 |
|
BLAKE2b-256 | 067ae7435723e37044852227c1a17d07ce1bf07658e0ac1b0a4a7ab50bf6947d |