Skip to main content

An interface between molecules and machine learning

Project description

MolML

Build Status Coverage Status Documentation Status PyPI version License

A library to interface molecules and machine learning. The goal of this library is to be a simple way to convert molecules into a vector representation for later use with libraries such as scikit-learn. This is done using a similar API scheme.

All of the coordinates are assumed to be in angstroms.

Features

- Simple interface to many common molecular descriptors and their variants
    - Molecule
        - Coulomb Matrix
        - Bag of Bonds
        - Encoded Bonds
        - Encoded Angles
        - Connectivity
        - Connectivity Tree
        - Autocorrelation
    - Atom
        - Shell
        - Local Encoded Bonds
        - Local Encoded Angles
        - Local Coulomb Matrix
        - Behler-Parrinello
    - Kernel
        - Atom/Summation Kernel
    - Fragment
        - FragmentMap
    - Crystal
        - Generallized Crystal
        - Ewald Sum Matrix
        - Sine Matrix
- Parallel feature generation
- Ability to save/load fit models
- Multiple input formats supported (and ability to define your own)
- Supports both Python 2 and Python 3

Example Usage

>>> from molml.features import CoulombMatrix
>>> feat = CoulombMatrix()
>>> H2 = (
...         ['H', 'H'],
...         [
...             [0.0, 0.0, 0.0],
...             [1.0, 0.0, 0.0],
...         ]
... )
>>> HCN = (
...         ['H', 'C', 'N'],
...         [
...             [-1.0, 0.0, 0.0],
...             [ 0.0, 0.0, 0.0],
...             [ 1.0, 0.0, 0.0],
...         ]
... )
>>> feat.fit([H2, HCN])
CoulombMatrix(input_type='list', n_jobs=1, sort=False, eigen=False, drop_values=False, only_lower_triangle=False)
>>> feat.transform([H2])
array([[ 0.5,  1. ,  0. ,  1. ,  0.5,  0. ,  0. ,  0. ,  0. ]])
>>> feat.transform([H2, HCN])
array([[  0.5      ,   1.       ,   0.       ,   1.       ,   0.5      ,
        0.       ,   0.       ,   0.       ,   0.       ],
        [  0.5      ,   6.       ,   3.5      ,   6.       ,  36.8581052,
        42.       ,   3.5      ,  42.       ,  53.3587074]])
>>>
>>> # Example loading from files directly
>>> feat2 = CoulombMatrix(input_type='filename')
CoulombMatrix(input_type='filename', n_jobs=1, sort=False, eigen=False, drop_values=False, only_lower_triangle=False)
>>> paths = ['data/qm7/qm-%04d.out' % i for i in xrange(2)]
>>> feat2.fit_transform(paths)
array([[ 36.8581052 ,   5.49459021,   5.49462885,   5.4945    ,
          5.49031286,   0.        ,   0.        ,   0.        ,
          5.49459021,   0.5       ,   0.56071947,   0.56071656,
          0.56064037,   0.        ,   0.        ,   0.        ,
          5.49462885,   0.56071947,   0.5       ,   0.56071752,
          0.56064089,   0.        ,   0.        ,   0.        ,
          5.4945    ,   0.56071656,   0.56071752,   0.5       ,
          0.56063783,   0.        ,   0.        ,   0.        ,
          5.49031286,   0.56064037,   0.56064089,   0.56063783,
          0.5       ,   0.        ,   0.        ,   0.        ,
          0.        ,   0.        ,   0.        ,   0.        ,
          0.        ,   0.        ,   0.        ,   0.        ,
          0.        ,   0.        ,   0.        ,   0.        ,
          0.        ,   0.        ,   0.        ,   0.        ,
          0.        ,   0.        ,   0.        ,   0.        ,
          0.        ,   0.        ,   0.        ,   0.        ],
       [ 36.8581052 ,  23.81043959,   5.48396427,   5.48394941,
          5.4837656 ,   2.78378686,   2.78375582,   2.78376439,
          23.8104396,  36.8581052 ,   2.78378953,   2.78375777,
          2.78375823,   5.4839846 ,   5.48393324,   5.48376877,
          5.48396427,   2.78378953,   0.5       ,   0.56363019,
          0.56362464,   0.40019757,   0.39971446,   0.3261774 ,
          5.48394941,   2.78375777,   0.56363019,   0.5       ,
          0.56362305,   0.39971429,   0.32617621,   0.40019524,
          5.4837656 ,   2.78375823,   0.56362464,   0.56362305,
          0.5       ,   0.32617702,   0.40019469,   0.3997145 ,
          2.78378686,   5.4839846 ,   0.40019757,   0.39971429,
          0.32617702,   0.5       ,   0.56362996,   0.56362587,
          2.78375582,   5.48393324,   0.39971446,   0.32617621,
          0.40019469,   0.56362996,   0.5       ,   0.56362278,
          2.78376439,   5.48376877,   0.3261774 ,   0.40019524,
          0.3997145 ,   0.56362587,   0.56362278,   0.5       ]])

For more examples, look in the examples. Note: To run some of the examples scikit-learn>=0.16.0 is required.

For the full documentation, refer to the docs or the docstrings in the code.

Dependencies

MolML works with both Python 2 and Python 3. It has been tested with the versions listed below, but newer versions should work.

python>=2.7/3.5/3.6
numpy>=1.9.1
scipy>=0.15.1
pathos>=0.2.0
bidict>=0.17.5
future  # For python 2

NOTE: Due to an issue with multiprocess (a pathos dependency), the minimum version of Python that will work is 2.7.4. For full details see this link. Without this, the parallel computation of features will fail.

Install

Once numpy and scipy are installed, the package can be installed with pip.

$ pip install molml

Or for the bleeding edge version, you can use

$ pip install git+git://github.com/crcollins/molml

Development

To install a development version, just clone the git repo.

$ git clone https://github.com/crcollins/molml
$ # cd to molml and setup some virtualenv
$ pip install -r requirements-dev.txt

Pull requests and bug reports are welcomed!

To build the documentation, you just need to install the documentation dependencies. These are already included in the dev install.

$ cd docs/
$ pip install -r requirements-docs.txt
$ make html

Testing

To run the tests, make sure that nose is installed and then run:

$ nosetests

To include coverage information, make sure that coverage is installed and then run:

$ nosetests --with-coverage --cover-package=molml --cover-erase

Citation

Currently, there is not a dedicated publication for MolML. Instead, feel free to cite the work that spawned this library.

@article{collins2018constant,
    title={Constant size descriptors for accurate machine learning models of molecular properties},
    author={Collins, Christopher R and Gordon, Geoffrey J and von Lilienfeld, O Anatole and Yaron, David J},
    journal={The Journal of Chemical Physics},
    volume={148},
    number={24},
    pages={241718},
    year={2018},
    publisher={AIP Publishing}
}

In addition, each feature extraction method has its own main reference listed in the docstring. These can also be accessed as follows:

>>> from molml.features import CoulombMatrix
>>> print(CoulombMatrix().get_citation())
Rupp, M.; Tkatchenko, A.; Muller, K.-R.; von Lilienfeld, O. A. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning. Phys. Rev. Lett. 2012, 108, 058301.
Hansen, K.; Montavon, G.; Biegler, F.; Fazli, S.; Rupp, M.; Scheffler, M.; von Lilienfeld, O. A.; Tkatchenko, A.; Muller, K.-R. Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies. J. Chem. Theory Comput. 2013, 9, 3404-3419.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

molml-0.9.0.tar.gz (49.3 kB view details)

Uploaded Source

File details

Details for the file molml-0.9.0.tar.gz.

File metadata

  • Download URL: molml-0.9.0.tar.gz
  • Upload date:
  • Size: 49.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/2.7

File hashes

Hashes for molml-0.9.0.tar.gz
Algorithm Hash digest
SHA256 493b1a762fea3f3209ab78d1eb6ace39bb96c940b86d62c1b32e31c5a3862c0b
MD5 363b64b539d6cff7c5dd7b1d39537f05
BLAKE2b-256 97f88e2bee8e954aa93933b797ad2c36ab79668d111b3dc5dddda94a1eee28c5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page