3DMolMS: prediction of tandem mass spectra from 3D molecular conformations
Project description
3DMolMS
3D Molecular Network for Mass Spectra Prediction (3DMolMS) is a deep neural network model to predict the MS/MS spectra of compounds from their 3D conformations. This model's molecular representation, learned through MS/MS prediction tasks, can be further applied to enhance performance in other molecular-related tasks, such as predicting retention times and collision cross sections.
Read our paper in Bioinformatics | Try our online service at GNPS | Install from PyPI
Installation
3DMolMS is available on PyPI. You can install the latest version using pip
:
pip install molnetpack
# PyTorch must be installed separately.
# For CUDA 11.6, install PyTorch with the following command:
pip install torch==1.13.0+cu116 torchvision==0.14.0+cu116 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu116
# For CUDA 11.7, use:
pip install torch==1.13.0+cu117 torchvision==0.14.0+cu117 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu117
# For CPU-only usage, use:
pip install torch==1.13.0+cpu torchvision==0.14.0+cpu torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cpu
3DMolMS can also be installed through source codes:
git clone https://github.com/JosieHong/3DMolMS.git
cd 3DMolMS
pip install .
Usage
To get started quickly, you can load a CSV or MGF file to predict MS/MS and then plot the predicted results.
import torch
from molnetpack import MolNet
# Set the device to CPU for CPU-only usage:
device = torch.device("cpu")
# For GPU usage, set the device as follows (replace '0' with your desired GPU index):
# gpu_index = 0
# device = torch.device(f"cuda:{gpu_index}")
# Instantiate a MolNet object
molnet_engine = MolNet(device, seed=42) # The random seed can be any integer.
# Load input data (here we use a CSV file as an example)
molnet_engine.load_data(path_to_test_data='./test/input_msms.csv') # Increasing the batch size if you wanna speed up.
# molnet_engine.load_data(path_to_test_data='./test/input_msms.mgf') # MGF file is also supported
# molnet_engine.load_data(path_to_test_data='./test/input_msms.pkl') # PKL file is faster.
# Predict MS/MS
spectra1 = molnet_engine.pred_msms(path_to_results='./test/output_qtof_msms.mgf', instrument='qtof')
# You could also download the checkpoint from release and set the 'path_to_checkpoint':
# spectra = molnet_engine.pred_msms(path_to_results='./test/output_msms.mgf', path_to_checkpoint='<path to the checkpoint>')
# Instrument can be 'qtof' or 'orbitrap'.
# Plot the predicted MS/MS with 3D molecular conformation
molnet_engine.plot_msms(dir_to_img='./img/', instrument='qtof')
For CCS prediction, please use the following codes after instantiating a MolNet object.
# Load input data
molnet_engine.load_data(path_to_test_data='./test/input_ccs.csv')
# Pred CCS
ccs_df = molnet_engine.pred_ccs(path_to_results='./test/output_ccs.csv')
For RT prediction, please use the following code after instantiating a MolNet object. Please note that since this model is trained on the METLIN-SMRT dataset, the predicted retention time is under the same experimental conditions as the METLIN-SMRT set.
# Load input data
molnet_engine.load_data(path_to_test_data='./test/input_rt.csv')
# Pred RT
rt_df = molnet_engine.pred_rt(path_to_results='./test/output_rt.csv')
For saving the molecular embeddings, please use the following codes after instantiating a MolNet object.
# Load input data
molnet_engine.load_data(path_to_test_data='./test/input_savefeat.csv')
# Inference to get the features
features = molnet_engine.save_features()
print('Titles:', ids)
print('Features shape:', features.shape)
The sample input files, a CSV and an MGF, are located at ./test/demo_input.csv
and ./test/demo_input.mgf
, respectively. If the input data is only expected to be used in CCS prediction, you may assign an arbitrary numerical value to the Collision_Energy
field in the CSV file or to COLLISION_ENERGY
in the MGF file. It's important to note that during the data loading phase, any input formats that are not supported will be automatically excluded. Below is a table outlining the types of input data that are supported:
Item | Supported input |
---|---|
Atom number | <=300 |
Atom types | 'C', 'O', 'N', 'H', 'P', 'S', 'F', 'Cl', 'B', 'Br', 'I', 'Na' |
Precursor types | '[M+H]+', '[M-H]-', '[M+H-H2O]+', '[M+Na]+', '[M+2H]2+' |
Collision energy | any number |
The documents for running MS/MS prediction from source codes are at MSMS_PRED.md.
Citation
If you use 3DMolMS in your research, please cite our paper:
@article{hong20233dmolms,
title={3DMolMS: prediction of tandem mass spectra from 3D molecular conformations},
author={Hong, Yuhui and Li, Sujun and Welch, Christopher J and Tichy, Shane and Ye, Yuzhen and Tang, Haixu},
journal={Bioinformatics},
volume={39},
number={6},
pages={btad354},
year={2023},
publisher={Oxford University Press}
}
@article{hong2024enhanced,
title={Enhanced structure-based prediction of chiral stationary phases for chromatographic enantioseparation from 3D molecular conformations},
author={Hong, Yuhui and Welch, Christopher J and Piras, Patrick and Tang, Haixu},
journal={Analytical Chemistry},
volume={96},
number={6},
pages={2351--2359},
year={2024},
publisher={ACS Publications}
}
Thank you for considering 3DMolMS for your research needs!
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file molnetpack-1.1.10.tar.gz
.
File metadata
- Download URL: molnetpack-1.1.10.tar.gz
- Upload date:
- Size: 27.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7fd59ff223a7f1aa421a1765839986cdffaf6175feb645bfd752d96c0da8a74f |
|
MD5 | cba2154e2a0a3c162973dda45f9e19f0 |
|
BLAKE2b-256 | db4b86b8bf689ade3c4b1d3d86891b96f65ecf50937e55559bb0cf18f9620df0 |
File details
Details for the file molnetpack-1.1.10-py3-none-any.whl
.
File metadata
- Download URL: molnetpack-1.1.10-py3-none-any.whl
- Upload date:
- Size: 30.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b26026e7d3a184f3925a2b1f5981567bfbaf9055994d38cc9d862dcc2eacbb68 |
|
MD5 | c35726e592ae7a0fa01f06ab259e7bf0 |
|
BLAKE2b-256 | 364fbffa66684c50affdc6bbf108acbae28607a30a805acd8f5e3e2773ebe259 |