Skip to main content

Integration of rdkit functionality into sklearn pipelines.

Project description

MolPipeline

MolPipeline is a Python package for processing molecules with RDKit in scikit-learn.

Background

The scikit-learn package provides a large variety of machine learning algorithms and data processing tools, among which is the Pipeline class, allowing users to prepend custom data processing steps to the machine learning model. MolPipeline extends this concept to the field of cheminformatics by wrapping standard RDKit functionality, such as reading and writing SMILES strings or calculating molecular descriptors from a molecule-object.

MolPipeline aims to provide:

  • Automated end-to-end processing from molecule data sets to deployable machine learning models.
  • Scalable parallel processing and low memory usage through instance-based processing.
  • Standard pipeline building blocks for flexibly building custom pipelines for various cheminformatics tasks.
  • Consistent error handling for tracking, logging, and replacing failed instances (e.g., a SMILES string that could not be parsed correctly).
  • Integrated and self-contained pipeline serialization for easy deployment and tracking in version control.

Publications

Sieg J, Feldmann CW, Hemmerich J, Stork C, Sandfort F, Eiden P, and Mathea M, MolPipeline: A python package for processing molecules with RDKit in scikit-learn, J. Chem. Inf. Model., doi:10.1021/acs.jcim.4c00863, 2024
Further links: arXiv

Feldmann CW, Sieg J, and Mathea M, Analysis of uncertainty of neural fingerprint-based models, 2024
Further links: repository

Installation

pip install molpipeline

Documentation

The notebooks folder contains many basic and advanced examples of how to use Molpipeline.

A nice introduction to the basic usage is in the 01_getting_started_with_molpipeline notebook.

Quick Start

Model building

Create a fingerprint-based prediction model:

from molpipeline import Pipeline
from molpipeline.any2mol import AutoToMol
from molpipeline.mol2any import MolToMorganFP
from molpipeline.mol2mol import (
    ElementFilter,
    SaltRemover,
)

from sklearn.ensemble import RandomForestRegressor

# set up pipeline
pipeline = Pipeline([
      ("auto2mol", AutoToMol()),                                     # reading molecules
      ("element_filter", ElementFilter()),                           # standardization
      ("salt_remover", SaltRemover()),                               # standardization
      ("morgan2_2048", MolToMorganFP(n_bits=2048, radius=2)),        # fingerprints and featurization
      ("RandomForestRegressor", RandomForestRegressor())             # machine learning model
    ],
    n_jobs=4)

# fit the pipeline
pipeline.fit(X=["CCCCCC", "c1ccccc1"], y=[0.2, 0.4])
# make predictions from SMILES strings
pipeline.predict(["CCC"])
# output: array([0.29])

Feature calculation

Calculating molecular descriptors from SMILES strings is straightforward. For example, physicochemical properties can be calculated like this:

from molpipeline import Pipeline
from molpipeline.any2mol import AutoToMol
from molpipeline.mol2any import MolToRDKitPhysChem

pipeline_physchem = Pipeline(
    [
        ("auto2mol", AutoToMol()),
        (
            "physchem",
            MolToRDKitPhysChem(
                standardizer=None,
                descriptor_list=["HeavyAtomMolWt", "TPSA", "NumHAcceptors"],
            ),
        ),
    ],
    n_jobs=-1,
)
physchem_matrix = pipeline_physchem.transform(["CCCCCC", "c1ccccc1(O)"])
physchem_matrix
# output: array([[72.066,  0.   ,  0.   ],
#                [88.065, 20.23 ,  1.   ]])

MolPipeline provides further features and descriptors from RDKit, for example Morgan (binary/count) fingerprints and MACCS keys. See the 04_feature_calculation notebook for more examples.

Clustering

Molpipeline provides several clustering algorithms as sklearn-like estimators. For example, molecules can be clustered by their Murcko scaffold. See the 02_scaffold_split_with_custom_estimators notebook for scaffolds splits and further examples.

from molpipeline.estimators import MurckoScaffoldClustering

scaffold_smiles = [
    "Nc1ccccc1",
    "Cc1cc(Oc2nccc(CCC)c2)ccc1",
    "c1ccccc1",
]
linear_smiles = ["CC", "CCC", "CCCN"]

# run the scaffold clustering
scaffold_clustering = MurckoScaffoldClustering(
    make_generic=False, linear_molecules_strategy="own_cluster", n_jobs=16
)
scaffold_clustering.fit_predict(scaffold_smiles + linear_smiles)
# output: array([1., 0., 1., 2., 2., 2.])

License

This software is licensed under the MIT license. See the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

molpipeline-0.9.1.tar.gz (121.0 kB view details)

Uploaded Source

Built Distribution

molpipeline-0.9.1-py3-none-any.whl (174.8 kB view details)

Uploaded Python 3

File details

Details for the file molpipeline-0.9.1.tar.gz.

File metadata

  • Download URL: molpipeline-0.9.1.tar.gz
  • Upload date:
  • Size: 121.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for molpipeline-0.9.1.tar.gz
Algorithm Hash digest
SHA256 973887e74292007adc6f071e997329592cdd24c6f3c6a33be83d616527bee484
MD5 63535f5915610e91e45d7619767cedd2
BLAKE2b-256 cccc5449d61b90e97a15c1b49a7eff9b299311ec0f64423d366467cbe77f1fb0

See more details on using hashes here.

File details

Details for the file molpipeline-0.9.1-py3-none-any.whl.

File metadata

  • Download URL: molpipeline-0.9.1-py3-none-any.whl
  • Upload date:
  • Size: 174.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for molpipeline-0.9.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3f53b946bddc38a54870639d30e9e5bfd2b0a6c2f126d7d6944007945db810fd
MD5 0ed2d0be443b7cf8d50b41d18fe231a0
BLAKE2b-256 3d7b01ffe5732602cbbac15642dbd33bb06b44b8bfe243626318d9a7997b44f4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page