Running estimates of moments
Project description
momentum
A mini-package for computing the running mean, variance, kurtosis and skew
- No dependencies ... not even numpy.
- No classes ... unless you want them.
- State is a dict, for trivial serialization.
- Tested against scipy, creme, statistics
Install
%pip install momentum
Usage: running mean, var
from momentum import var_init, var_update
from pprint import pprint
m = var_init()
for x in [5,3,2.4,1.0,5.0]:
m = var_update(m,x)
pprint(m)
Usage: running mean, var, kurtosis and skew
from momentum import kurtosis_init, kurtosis_update
m = kurtosis_init()
for x in [5,3,2.4,1.0,5.0]:
m = kurtosis_update(m,x)
pprint(m)
File an issue if you need more help using this.
Usage: running recency-weighted mean, var
from momentum import forgettingvar_init, forgettingvar_update
from pprint import pprint
m = rvar_init(rho=0.01,n=15)
for x in [5,3,2.4,1.0,5.0]:
m = rvar_update(m,x)
pprint(m)
This will switch from running variance to a weighted variance after 15 data points.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
momentum-0.1.0.tar.gz
(3.5 kB
view details)
Built Distribution
File details
Details for the file momentum-0.1.0.tar.gz
.
File metadata
- Download URL: momentum-0.1.0.tar.gz
- Upload date:
- Size: 3.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bb92bb5e0b83f41a1e068bf095b8c1fd2297c4f94c89c422972f1a3798e211a7 |
|
MD5 | a36d077271fd87df568fa066a623e743 |
|
BLAKE2b-256 | a4f7086b5966306b29b608f337f1c5bc47eddb2268980da181e5f70782c01a81 |
File details
Details for the file momentum-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: momentum-0.1.0-py3-none-any.whl
- Upload date:
- Size: 4.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 48a6f94dbab60c8585d0ee4fed60fc9b9b4b770c870a1e7000beacbbee59d5c9 |
|
MD5 | 8afeae004254382b4444e9dc3b4efe6a |
|
BLAKE2b-256 | e8e73df6517afcaba177cc3f3fb81d7a7f099210af5e11c2f7608d29281a8baa |