Running estimates of moments
Project description
momentum
A mini-package for computing the running mean, variance, kurtosis and skew
- No dependencies ... not even numpy.
- No classes ... unless you want them.
- State is a dict, for trivial serialization.
- Tested against scipy, creme, statistics
Install
%pip install momentum
Usage: running mean, var
from momentum import var_init, var_update
from pprint import pprint
m = var_init()
for x in [5,3,2.4,1.0,5.0]:
m = var_update(m,x)
pprint(m)
Usage: running mean, var, kurtosis and skew
from momentum import kurtosis_init, kurtosis_update
m = kurtosis_init()
for x in [5,3,2.4,1.0,5.0]:
m = kurtosis_update(m,x)
pprint(m)
File an issue if you need more help using this.
Usage: running recency-weighted mean, var
from momentum import forgettingvar_init, forgettingvar_update
from pprint import pprint
m = rvar_init(rho=0.01,n=15)
for x in [5,3,2.4,1.0,5.0]:
m = rvar_update(m,x)
pprint(m)
This will switch from running variance to a weighted variance after 15 data points.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
momentum-0.1.1.tar.gz
(3.5 kB
view details)
Built Distribution
File details
Details for the file momentum-0.1.1.tar.gz
.
File metadata
- Download URL: momentum-0.1.1.tar.gz
- Upload date:
- Size: 3.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a5a951bf3e171e95f13a6dddc264fdb34257e56e9ccb3061b873d1a6b1943201 |
|
MD5 | c6d79d798fd6a3e21257ed577b656d6b |
|
BLAKE2b-256 | 157414fa09c8938d08e13715e168eb093b7d1aeec54117a329efdd79531668ea |
File details
Details for the file momentum-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: momentum-0.1.1-py3-none-any.whl
- Upload date:
- Size: 4.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7545539aa1431e44c97915112abc536cef575f54472e744488dd790e54f59b95 |
|
MD5 | d5b3d680a34a7e5bebe0283c94c3d146 |
|
BLAKE2b-256 | f94f93385a30d21d312405c7caa94548798aa77ea88262f8c50ebcf27ed2f726 |