Running estimates of moments
Project description
momentum
A mini-package for computing the running mean, variance, kurtosis and skew
- No dependencies ... not even numpy.
- No classes ... unless you want them.
- State is a dict, for trivial serialization.
- Tested against scipy, creme, statistics
Install
%pip install momentum
Usage: running mean, var
from momentum import var_init, var_update
from pprint import pprint
m = var_init()
for x in [5,3,2.4,1.0,5.0]:
m = var_update(m,x)
pprint(m)
Usage: running mean, var, kurtosis and skew
from momentum import kurtosis_init, kurtosis_update
m = kurtosis_init()
for x in [5,3,2.4,1.0,5.0]:
m = kurtosis_update(m,x)
pprint(m)
File an issue if you need more help using this.
Usage: running recency-weighted mean, var
from momentum import forgettingvar_init, forgettingvar_update
from pprint import pprint
m = rvar_init(rho=0.01,n=15)
for x in [5,3,2.4,1.0,5.0]:
m = rvar_update(m,x)
pprint(m)
This will switch from running variance to a weighted variance after 15 data points.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
momentum-0.1.3.tar.gz
(5.5 kB
view details)
Built Distribution
File details
Details for the file momentum-0.1.3.tar.gz
.
File metadata
- Download URL: momentum-0.1.3.tar.gz
- Upload date:
- Size: 5.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f63fd8c35e923ee4d853594e3d9c15893716450e601ad1a7a576635b43a03f36 |
|
MD5 | 5fcb8f6a067a2bb1ea6d4c8bd751f6d7 |
|
BLAKE2b-256 | 21912817b2143ac5504e1dbcdafa72547d3c54ff1919e1d714d00f906b5f5aa8 |
File details
Details for the file momentum-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: momentum-0.1.3-py3-none-any.whl
- Upload date:
- Size: 6.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2afedaee1d883a194452befa414a208fe1a7c470ddc70472f57e51e0aa9a97a6 |
|
MD5 | ad3d8250507d415ff6579fae5f9d8cbc |
|
BLAKE2b-256 | 742b44172fb63bb273096ab4f8c3746a389829a53223a556c95dcde3a42e2d46 |