Skip to main content

Urban Morphology Measuring Toolkit

Project description

momepy

Documentation Status Build Status Build status codecov CodeFactor DOI

Introduction

Momepy is a library for quantitative analysis of urban form - urban morphometrics. It is built on top of GeoPandas, PySAL and networkX.

momepy stands for Morphological Measuring in Python

Some of the functionality that momepy offers:

  • Measuring dimensions of morphological elements, their parts, and aggregated structures.
  • Quantifying shapes of geometries representing a wide range of morphological features.
  • Capturing spatial distribution of elements of one kind as well as relationships between different kinds.
  • Computing density and other types of intensity characters.
  • Calculating diversity of various aspects of urban form.
  • Capturing connectivity of urban street networks
  • Generating relational elements of urban form (e.g. morphological tessellation)

Momepy aims to provide a wide range of tools for a systematic and exhaustive analysis of urban form. It can work with a wide range of elements, while focused on building footprints and street networks.

Momepy is a result of ongoing research of Urban Design Studies Unit (UDSU) supported by the Axel and Margaret Ax:son Johnson Foundation as a part of “The Urban Form Resilience Project” in partnership with University of Strathclyde in Glasgow, UK.

Comments, suggestions, feedback, and contributions, as well as bug reports, are very welcome.

Getting Started

Quick and easy getting started guide is part of the User Guide.

Documentation

Documentation of momepy is available at docs.momepy.org.

User Guide

User guide with examples of momepy usage is available at guide.momepy.org.

Examples

coverage = momepy.AreaRatio(tessellation, buildings, left_areas=tessellation.area,
                            right_areas='area', unique_id='uID')
tessellation['CAR'] = coverage.series

Coverage Area Ratio

area_simpson = momepy.Simpson(tessellation, values='area',
                              spatial_weights=sw3,
                              unique_id='uID')
tessellation['area_simpson'] = area_simpson.series

Local Simpson's diversity of area

G = momepy.straightness_centrality(G)

Straightness centrality

How to cite

To cite momepy please use following software paper published in the JOSS.

Fleischmann, M. (2019) ‘momepy: Urban Morphology Measuring Toolkit’, Journal of Open Source Software, 4(43), p. 1807. doi: 10.21105/joss.01807.

BibTeX:

@article{fleischmann_2019,
    author={Fleischmann, Martin},
    title={momepy: Urban Morphology Measuring Toolkit},
    journal={Journal of Open Source Software},
    year={2019},
    volume={4},
    number={43},
    pages={1807},
    DOI={10.21105/joss.01807}
}

Install

You can install momepy using Conda from conda-forge (recommended):

conda install -c conda-forge momepy

or from PyPI using pip:

pip install momepy

See the installation instructions for detailed instructions. Momepy depends on python geospatial stack, which might cause some dependency issues.

Contributing to momepy

Contributions of any kind to momepy are more than welcome. That does not mean new code only, but also improvements of documentation and user guide, additional tests (ideally filling the gaps in existing suite) or bug report or idea what could be added or done better.

All contributions should go through our GitHub repository. Bug reports, ideas or even questions should be raised by opening an issue on the GitHub tracker. Suggestions for changes in code or documentation should be submitted as a pull request. However, if you are not sure what to do, feel free to open an issue. All discussion will then take place on GitHub to keep the development of momepy transparent.

If you decide to contribute to the codebase, ensure that you are using an up-to-date master branch. The latest development version will always be there, including the documentation (powered by sphinx).

Details are available in the documentation.

Get in touch

If you have a question regarding momepy, feel free to open an issue on GitHub. Eventually, you can contact us on dev@momepy.org.


Copyright (c) 2018- Martin Fleischmann, University of Strathclyde, Urban Design Studies Unit

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

momepy-0.3.0.tar.gz (239.0 kB view details)

Uploaded Source

Built Distribution

momepy-0.3.0-py3-none-any.whl (226.7 kB view details)

Uploaded Python 3

File details

Details for the file momepy-0.3.0.tar.gz.

File metadata

  • Download URL: momepy-0.3.0.tar.gz
  • Upload date:
  • Size: 239.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for momepy-0.3.0.tar.gz
Algorithm Hash digest
SHA256 9bc99a56854e760674996865d2c48e3686a5d9a45efe29c5aca64e58c557b8f9
MD5 41e30b3ec79a4e4feced28e72dcb2f06
BLAKE2b-256 52524669873aeacc090295ef6d475aa233b63b675538cf0382dee34954f89e62

See more details on using hashes here.

File details

Details for the file momepy-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: momepy-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 226.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for momepy-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5bbbe9c333eeb364b76a51f84c460363fe3e5c63a38e98641c7d7d9f59f42411
MD5 654951a96d4c69ae6579de11d1ca8be8
BLAKE2b-256 857cc0c657fba27d21b901b51b3a2d1c5a7049547460e6e43f674441a681f7d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page