Skip to main content

AI Toolkit for Healthcare Imaging

Project description

project-monai

Medical Open Network for AI

License CI Build Documentation Status codecov PyPI version

MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its ambitions are:

  • developing a community of academic, industrial and clinical researchers collaborating on a common foundation;
  • creating state-of-the-art, end-to-end training workflows for healthcare imaging;
  • providing researchers with the optimized and standardized way to create and evaluate deep learning models.

Features

The codebase is currently under active development. Please see the technical highlights of the current milestone release.

  • flexible pre-processing for multi-dimensional medical imaging data;
  • compositional & portable APIs for ease of integration in existing workflows;
  • domain-specific implementations for networks, losses, evaluation metrics and more;
  • customizable design for varying user expertise;
  • multi-GPU data parallelism support.

Installation

To install the current release:

pip install monai

To install from the source code repository:

pip install git+https://github.com/Project-MONAI/MONAI#egg=MONAI

Alternatively, pre-built Docker image is available via DockerHub:

# with docker v19.03+
docker run --gpus all --rm -ti --ipc=host projectmonai/monai:latest

For more details, please refer to the installation guide.

Getting Started

MedNIST demo and MONAI for PyTorch Users are available on Colab.

Examples and notebook tutorials are located at Project-MONAI/tutorials.

Technical documentation is available at docs.monai.io.

Contributing

For guidance on making a contribution to MONAI, see the contributing guidelines.

Community

Join the conversation on Twitter @ProjectMONAI or join our Slack channel.

Ask and answer questions over on MONAI's GitHub Discussions tab.

Links

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

monai-0.4.0-202012151415-py3-none-any.whl (350.9 kB view details)

Uploaded Python 3

File details

Details for the file monai-0.4.0-202012151415-py3-none-any.whl.

File metadata

  • Download URL: monai-0.4.0-202012151415-py3-none-any.whl
  • Upload date:
  • Size: 350.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200604 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7

File hashes

Hashes for monai-0.4.0-202012151415-py3-none-any.whl
Algorithm Hash digest
SHA256 da0395de904acdfeb261dbbe46d6fecadfc274991385604dcf5e5b49a483242e
MD5 b88f648a95848086088defd21612d95e
BLAKE2b-256 d3978f5dcb5ec4245277169a024c1fff287c3decb4d5b7741afe75a49855dc4d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page