AI Toolkit for Healthcare Imaging
Project description
Medical Open Network for AI
MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its ambitions are:
- developing a community of academic, industrial and clinical researchers collaborating on a common foundation;
- creating state-of-the-art, end-to-end training workflows for healthcare imaging;
- providing researchers with the optimized and standardized way to create and evaluate deep learning models.
Features
Please see the technical highlights and What's New of the milestone releases.
- flexible pre-processing for multi-dimensional medical imaging data;
- compositional & portable APIs for ease of integration in existing workflows;
- domain-specific implementations for networks, losses, evaluation metrics and more;
- customizable design for varying user expertise;
- multi-GPU multi-node data parallelism support.
Installation
To install the current release, you can simply run:
pip install monai
Please refer to the installation guide for other installation options.
Getting Started
MedNIST demo and MONAI for PyTorch Users are available on Colab.
Examples and notebook tutorials are located at Project-MONAI/tutorials.
Technical documentation is available at docs.monai.io.
Citation
If you have used MONAI in your research, please cite us! The citation can be exported from: https://arxiv.org/abs/2211.02701.
Model Zoo
The MONAI Model Zoo is a place for researchers and data scientists to share the latest and great models from the community. Utilizing the MONAI Bundle format makes it easy to get started building workflows with MONAI.
Contributing
For guidance on making a contribution to MONAI, see the contributing guidelines.
Community
Join the conversation on Twitter/X @ProjectMONAI or join our Slack channel.
Ask and answer questions over on MONAI's GitHub Discussions tab.
Links
- Website: https://monai.io/
- API documentation (milestone): https://docs.monai.io/
- API documentation (latest dev): https://docs.monai.io/en/latest/
- Code: https://github.com/Project-MONAI/MONAI
- Project tracker: https://github.com/Project-MONAI/MONAI/projects
- Issue tracker: https://github.com/Project-MONAI/MONAI/issues
- Wiki: https://github.com/Project-MONAI/MONAI/wiki
- Test status: https://github.com/Project-MONAI/MONAI/actions
- PyPI package: https://pypi.org/project/monai/
- conda-forge: https://anaconda.org/conda-forge/monai
- Weekly previews: https://pypi.org/project/monai-weekly/
- Docker Hub: https://hub.docker.com/r/projectmonai/monai
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file monai-1.4.0rc7.tar.gz
.
File metadata
- Download URL: monai-1.4.0rc7.tar.gz
- Upload date:
- Size: 1.7 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cb8a351c8d8c8c9ecbb8bb780f3350a9aa9e984af2de7948fcaf3fb85ff7ab22 |
|
MD5 | 9fb8680fc1155ded721d0cd565eaf54b |
|
BLAKE2b-256 | eb02880769a7783065d99d6bb2e0d82c181e727b65cc521fbbbe48a7b74cc3ce |
File details
Details for the file monai-1.4.0rc7-py3-none-any.whl
.
File metadata
- Download URL: monai-1.4.0rc7-py3-none-any.whl
- Upload date:
- Size: 1.5 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8f2989ae768ff032ca38217f23b0857ab1a2d20ee32271aa71e7534987cbc73e |
|
MD5 | a1759cfe0fa7c916761e04d89b798aaf |
|
BLAKE2b-256 | 222b50a775035a86c6e0ee9187aa9e447ecfd75fa65f1ea640d2cfa99f28b96b |