Skip to main content

Active Learning Toolkit for Healthcare Imaging

Project description

MONAI Label

License CI Build Documentation Status PyPI version Azure DevOps tests (compact) Azure DevOps coverage codecov

MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI. It is an open-source and easy-to-install ecosystem that can run locally on a machine with single or multiple GPUs. Both server and client work on the same/different machine. It shares the same principles with MONAI.

MONAI Label Demo

DEMO

Features

The codebase is currently under active development.

  • Framework for developing and deploying MONAI Label Apps to train and infer AI models
  • Compositional & portable APIs for ease of integration in existing workflows
  • Customizable labelling app design for varying user expertise
  • Annotation support via 3DSlicer & OHIF
  • PACS connectivity via DICOMWeb

Installation

MONAI Label supports following OS with GPU/CUDA enabled.

To install the current release, you can simply run:

  pip install monailabel
  
  # download sample apps/dataset
  monailabel apps --download --name deepedit --output apps
  monailabel datasets --download --name Task09_Spleen --output datasets
  
  # run server
  monailabel start_server --app apps/deepedit --studies datasets/Task09_Spleen/imagesTr

If monailabel install path is not automatically determined, then you can provide explicit install path as:

monailabel apps --prefix ~/.local

For prerequisites, other installation methods (using the default GitHub branch, using Docker, etc.), please refer to the installation guide.

Once you start the MONAI Label Server, by default server will be up and serving at http://127.0.0.1:8000/. Open the serving URL in browser. It will provide you the list of Rest APIs available. For this, please make sure you use the HTTP protocol. HTTPS is not implemented.

3D Slicer

Download Preview Release from https://download.slicer.org/ and install MONAI Label plugin from Slicer Extension Manager.

Refer 3D Slicer plugin for other options to install and run MONAI Label plugin in 3D Slicer.

To avoid accidentally using an older Slicer version, you may want to uninstall any previously installed 3D Slicer package.

OHIF

MONAI Label comes with pre-built plugin for OHIF Viewer. To use OHIF Viewer, you need to provide DICOMWeb instead of FileSystem as studies when you start the server.

Please install Orthanc before using OHIF Viewer. For Ubuntu 20.x, Orthanc can be installed as apt-get install orthanc orthanc-dicomweb. However, you have to upgrade to latest version by following steps mentioned here

You can use PlastiMatch to convert NIFTI to DICOM

  # start server using DICOMWeb
  monailabel start_server --app apps\deepedit --studies http://127.0.0.1:8042/dicom-web

OHIF Viewer will be accessible at http://127.0.0.1:8000/ohif/

OHIF

NOTE: OHIF does not yet support Scribbles-based annotations and Multi-Label interaction for DeepEdit.

Contributing

For guidance on making a contribution to MONAI Label, see the contributing guidelines.

Community

Join the conversation on Twitter @ProjectMONAI or join our Slack channel.

Ask and answer questions over on MONAI Label's GitHub Discussions tab.

Links

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monailabel-weekly-0.4.dev2204.tar.gz (4.9 MB view details)

Uploaded Source

Built Distribution

monailabel_weekly-0.4.dev2204-py3-none-any.whl (5.1 MB view details)

Uploaded Python 3

File details

Details for the file monailabel-weekly-0.4.dev2204.tar.gz.

File metadata

  • Download URL: monailabel-weekly-0.4.dev2204.tar.gz
  • Upload date:
  • Size: 4.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for monailabel-weekly-0.4.dev2204.tar.gz
Algorithm Hash digest
SHA256 bf82b9670ad02bf8f9ee94b77f52d70f359ec7afaf0d64d0e4e7dd5f42b78d1c
MD5 05031a80cb4c4a423d818c1a43633e95
BLAKE2b-256 8891ee6049435855f93f437697f27ef302117cd72d6a9ed0739971a40a02a2bf

See more details on using hashes here.

File details

Details for the file monailabel_weekly-0.4.dev2204-py3-none-any.whl.

File metadata

  • Download URL: monailabel_weekly-0.4.dev2204-py3-none-any.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for monailabel_weekly-0.4.dev2204-py3-none-any.whl
Algorithm Hash digest
SHA256 e2f950e0534193256d6724a41cb389504202930fa31ec9e3560730d8a220d551
MD5 afbc62b9b957d6c1000a7c1ccf85c794
BLAKE2b-256 270b1b196b51a8873384c857b82d9d396979155717fc382947ef1d291d301737

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page