Skip to main content

Active Learning Toolkit for Healthcare Imaging

Project description

MONAI Label

License CI Build Documentation Status codecov PyPI version

MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI. It is an open-source and easy-to-install ecosystem that can run locally on a machine with one or two GPUs. Both server and client work on the same/different machine. However, initial support for multiple users is restricted. It shares the same principles with MONAI.

Brief Demo

DEMO

Features

The codebase is currently under active development.

  • framework for developing and deploying MONAI Label Apps to train and infer AI models
  • compositional & portable APIs for ease of integration in existing workflows
  • customizable design for varying user expertise
  • 3DSlicer support

Installation

MONAI Label supports following OS with GPU/CUDA enabled.

To install the current release, you can simply run:

  pip install monailabel
  
  # download sample apps/dataset
  monailabel apps --download --name deepedit --output apps
  monailabel datasets --download --name Task02_Heart --output datasets
  
  # run server (ubuntu)
  monailabel start_server --app apps/deepedit --studies datasets/Task02_Heart/imagesTr

  # run server (windows)
  monailabel start_server --app apps\deepedit --studies datasets\Task02_Heart\imagesTr
  

For prerequisites, other installation methods (using the default GitHub branch, using Docker, etc.), please refer to the installation guide.

Once you start the MONAI Label Server, by default it will be up and serving at http://127.0.0.1:8000/. Open the serving URL in browser. It will provide you the list of Rest APIs available.

3D Slicer

Download Preview Release from https://download.slicer.org/ and install MONAI Label plugin from Slicer Extension Manager.

Refer 3D Slicer plugin for other options to install and run MONAI Label plugin in 3D Slicer.

To avoid accidentally using an older Slicer version, you may want to uninstall any previously installed 3D Slicer package.

OHIF [WIP]

MONAI Label comes with pre-built plugin for OHIF Viewer.

Please install Orthanc before using OHIF Viewer. For Ubuntu 20.x, Orthanc can be installed as apt-get install orthanc orthanc-dicomweb. However, you have to upgrade to latest version by following steps mentioned here

You can use PlastiMatch to convert NIFTI to DICOM

OHIF Viewer will be accessible at http://127.0.0.1:8000/ohif/ after running the following command:

(cd plugins/ohif && ./build.sh)

OHIF

Contributing

For guidance on making a contribution to MONAI Label, see the contributing guidelines.

Community

Join the conversation on Twitter @ProjectMONAI or join our Slack channel.

Ask and answer questions over on MONAI Label's GitHub Discussions tab.

Links

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

File details

Details for the file monailabel-0.2.0rc1-202109231616-py3-none-any.whl.

File metadata

  • Download URL: monailabel-0.2.0rc1-202109231616-py3-none-any.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.10

File hashes

Hashes for monailabel-0.2.0rc1-202109231616-py3-none-any.whl
Algorithm Hash digest
SHA256 1559418f64713aaf5cc2a22dfe49bdd0c25b7f3458d88b2de51d52c251618896
MD5 54747a861c0e8626a68efb56a23c83e6
BLAKE2b-256 5d56c3ca9400f46e59598b489932b0ad38f2c3963fe481d3e4fc2c300cafe414

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page