Skip to main content

MON (Meadian of meaNs)

Project description

MONarchy module for MON estimators

MONArchy provides :

  • estimation functions using MON and derivative methods
  • The MONArchy class to call each function on a set of data

Analyse.py

  • Analyse : to load data and return a JSON file with estimations and descriptive statistics

exemple :

a = Analyse(path)
print(a.head())

print(a.infos())
a.save_graph("0_0_R","fig.png")

with

  • path : the path of a CSV file (string)
  • column_name : the column name (string)

produce a JSON file with statistical estimators

Changelog

1.0.8

  • add a method to list column name

1.0.7

  • correct requirements.txt

1.0.6

  • add save_graph in Analyse

1.0.5

  • add bayesian MoN

References

@article{orenstein_robust_2019,
	title = {Robust Mean Estimation with the Bayesian Median of Means},
	url = {http://arxiv.org/abs/1906.01204},
	journaltitle = {{arXiv}:1906.01204 [math, stat]},
	author = {Orenstein, Paulo},
	urldate = {2021-04-08},
	date = {2019-06-04},
	eprinttype = {arxiv},
	eprint = {1906.01204},
	keywords = {Bayesian, Estimators, {MON}, Math, Mathematics - Statistics Theory, Statistics - Methodology},
}
@unpublished{buisine:hal-03201630,
  TITLE = {{Fireflies removing in Monte Carlo rendering with adaptive Median of meaNs}},
  AUTHOR = {Buisine, J{\'e}r{\^o}me and Delepoulle, Samuel and Renaud, Christophe},
  URL = {https://hal.archives-ouvertes.fr/hal-03201630},
  NOTE = {working paper or preprint},
  YEAR = {2021},
  MONTH = Apr,
  PDF = {https://hal.archives-ouvertes.fr/hal-03201630/file/Gini_MON_2021_arXiv.pdf},
  HAL_ID = {hal-03201630},
  HAL_VERSION = {v1},
}

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MONarchy-1.0.15.tar.gz (5.9 kB view details)

Uploaded Source

Built Distribution

MONarchy-1.0.15-py3-none-any.whl (6.2 kB view details)

Uploaded Python 3

File details

Details for the file MONarchy-1.0.15.tar.gz.

File metadata

  • Download URL: MONarchy-1.0.15.tar.gz
  • Upload date:
  • Size: 5.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for MONarchy-1.0.15.tar.gz
Algorithm Hash digest
SHA256 91d105448a2d59f2c4241dd5afd3fa3e9b93d266cd8d753d81ea5ff17514a31b
MD5 51c4a6e5f62d3a9930a3707fc6c1e975
BLAKE2b-256 44c3734ad63fca315c6139e3f3ca2f25f518db03b5b585de3b1e5e6967a3bff9

See more details on using hashes here.

File details

Details for the file MONarchy-1.0.15-py3-none-any.whl.

File metadata

  • Download URL: MONarchy-1.0.15-py3-none-any.whl
  • Upload date:
  • Size: 6.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for MONarchy-1.0.15-py3-none-any.whl
Algorithm Hash digest
SHA256 26e98d259c3b5fa6dbbe616e7dbbb7ffff1d50d21d0739f6769a8950b437f149
MD5 9c14aa51bedfb6649d07c39968bf3d96
BLAKE2b-256 fc6a3e7f24b1c0ac637e89fd7415df1a0c8f594816153e2e2a75bd22c838b272

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page