Skip to main content

Monasca statsd Python client

Project description

Team and repository tags

A Monasca-Statsd Python Client.

Quick Start Guide

First install the library with pip or easy_install:

# Install in system python ...
sudo pip install monasca-statsd

# .. or into a virtual env
pip install monasca-statsd

Then start instrumenting your code:

# Import the module.
import monascastatsd as mstatsd

# Create the connection
conn = mstatsd.Connection(host='localhost', port=8125)

# Create the client with optional dimensions
client = mstatsd.Client(connection=conn, dimensions={'env': 'test'})

NOTE: You can also create a client without specifying the connection and it will create the client
with the default connection information for the monasca-agent statsd processor daemon
which uses host='localhost' and port=8125.

client = mstatsd.Client(dimensions={'env': 'test'})

# Increment and decrement a counter.
counter = client.get_counter(name='page.views')

counter += 3

counter -= 3

# Record a gauge 50% of the time.
gauge = client.get_gauge('gauge', dimensions={'env': 'test'})

gauge.send('metric', 123.4, sample_rate=0.5)

# Sample a histogram.
histogram = client.get_histogram('histogram', dimensions={'test': 'True'})

histogram.send('metric', 123.4, dimensions={'color': 'red'})

# Time a function call.
timer = client.get_timer()

def render_page():
    # Render things ...

# Time a block of code.
timer = client.get_timer()

with timer.time('t'):
    # Do stuff

# Add dimensions to any metric.
histogram = client.get_histogram('my_hist')
histogram.send('query.time', 10, dimensions = {'version': '1.0', 'environment': 'dev'})


To suggest a feature, report a bug, or participate in the general discussion, head over to StoryBoard.


See LICENSE file. Code was originally forked from Datadog’s dogstatsd-python, hence the dual license.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
monasca_statsd-1.10.1-py2.py3-none-any.whl (15.0 kB) Copy SHA256 hash SHA256 Wheel py2.py3 Jul 19, 2018
monasca-statsd-1.10.1.tar.gz (19.9 kB) Copy SHA256 hash SHA256 Source None Jul 19, 2018

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page