Monasca statsd Python client
Project description
Openstack Monasca Statsd
A Monasca-Statsd Python Client.
Quick Start Guide
First install the library with pip or easy_install:
# Install in system python ... sudo pip install monasca-statsd # .. or into a virtual env pip install monasca-statsd
Then start instrumenting your code:
# Import the module. import monascastatsd as mstatsd # Create the connection conn = mstatsd.Connection(host='localhost', port=8125) # Create the client with optional dimensions client = mstatsd.Client(connection=conn, dimensions={'env': 'test'}) NOTE: You can also create a client without specifying the connection and it will create the client with the default connection information for the monasca-agent statsd processor daemon which uses host='localhost' and port=8125. client = mstatsd.Client(dimensions={'env': 'test'}) # Increment and decrement a counter. counter = client.get_counter(name='page.views') counter.increment() counter += 3 counter.decrement() counter -= 3 # Record a gauge 50% of the time. gauge = client.get_gauge('gauge', dimensions={'env': 'test'}) gauge.send('metric', 123.4, sample_rate=0.5) # Sample a histogram. histogram = client.get_histogram('histogram', dimensions={'test': 'True'}) histogram.send('metric', 123.4, dimensions={'color': 'red'}) # Time a function call. timer = client.get_timer() @timer.timed('page.render') def render_page(): # Render things ... pass # Time a block of code. timer = client.get_timer() with timer.time('t'): # Do stuff time.sleep(2) # Add dimensions to any metric. histogram = client.get_histogram('my_hist') histogram.send('query.time', 10, dimensions = {'version': '1.0', 'environment': 'dev'})
Feedback
To suggest a feature, report a bug, or participate in the general discussion, head over to StoryBoard.
License
See LICENSE file. Code was originally forked from Datadog’s dogstatsd-python, hence the dual license.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
monasca-statsd-2.4.0.tar.gz
(23.1 kB
view details)
Built Distribution
File details
Details for the file monasca-statsd-2.4.0.tar.gz
.
File metadata
- Download URL: monasca-statsd-2.4.0.tar.gz
- Upload date:
- Size: 23.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
e37eba94ac2e13e984c63c71f58c65cffcbf744a5d89665c118deb5c16eeb5ec
|
|
MD5 |
a041e793c7b3c3b821e4ef842f4a16ed
|
|
BLAKE2b-256 |
a51612066e3a2a41e51b3e987a873b228869e02bd78c5a6c230b3f0a558e4bac
|
File details
Details for the file monasca_statsd-2.4.0-py3-none-any.whl
.
File metadata
- Download URL: monasca_statsd-2.4.0-py3-none-any.whl
- Upload date:
- Size: 20.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
5782b497ef113ad76463324b4149d19dae7875cfbce3f7f07ba942dc246f4cdf
|
|
MD5 |
0408a38f50cdd68d49918a1e6fbdec7f
|
|
BLAKE2b-256 |
210c4953656d138ad26b1f335b6e6028262cfb5292d1ee3a7554823871bfa4e0
|